School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Environ Sci Technol. 2024 Aug 20;58(33):14875-14885. doi: 10.1021/acs.est.4c00503. Epub 2024 Aug 6.
Efficient drinking water disinfection methods are critical for public health. Locally enhanced electric field treatment (LEEFT) is an antimicrobial method that uses sharp structures, like metallic nanowires, to enhance the electric field at tips and cause bacteria inactivation. Electroporation is the originally designed mechanism of LEEFT. Although oxidation is typically undesired due to byproduct generation and electrode corrosion, it can enhance the overall disinfection efficiency. In this work, we conduct an operando investigation of LEEFT, in which we change the electrical parameters to tune the mechanisms between electrophysical electroporation and electrochemical oxidation. Pure electroporation (i.e., without detectable oxidation) could be achieved under a duty cycle of ≤0.1% and a pulse width of ≤2 μs. Applying 2 μs pulses at 7-8 kV/cm and 0.1% duty cycle results in 80-100% bacteria inactivation with pure electroporation. A higher chance of oxidation is found with a higher duty cycle and a longer pulse width, where the antimicrobial efficiency could also be enhanced. For water with a higher conductivity, a higher antimicrobial efficiency can be achieved under the same treatment conditions, and electrochemical reactions could be induced more easily. The findings shown in this work improve the fundamental understanding of LEEFT and help optimize the performance of LEEFT in real applications.
高效的饮用水消毒方法对公共卫生至关重要。局部增强电场处理(LEEFT)是一种抗菌方法,它使用锐利的结构,如金属纳米线,来增强尖端的电场,从而导致细菌失活。电穿孔是 LEEFT 的最初设计机制。虽然氧化通常是不希望的,因为会产生副产物和电极腐蚀,但它可以提高整体消毒效率。在这项工作中,我们对 LEEFT 进行了原位研究,我们改变了电参数来调节电物理电穿孔和电化学氧化之间的机制。在占空比≤0.1%和脉宽≤2 μs 的条件下,可以实现纯电穿孔(即没有可检测到的氧化)。在 7-8 kV/cm 和 0.1%占空比下施加 2 μs 脉冲,可实现 80-100%的细菌失活,采用纯电穿孔。更高的占空比和更长的脉冲宽度会增加氧化的可能性,从而提高抗菌效率。对于电导率更高的水,在相同的处理条件下可以实现更高的抗菌效率,并且更容易引发电化学反应。本工作中的发现提高了对 LEEFT 的基本理解,并有助于优化 LEEFT 在实际应用中的性能。