Mendoza-Chávez Claudia Erika, Mostafazadeh Ali Khosravanipour, Drogui Patrick, Buelna-Acedo Gerardo, Ulloa-Mercado Ruth Gabriela, Leyva-Soto Luis Alonso, Serrano-Palacios Denisse, Rentería-Méxia Ana, Díaz-Tenorio Lourdes Mariana, Gortáres-Moryoqui Pablo
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación E Innovación en Biotecnologíaa, Agropecuaria y Ambiental), 5 de Febrero 818 Sur , C.P 85000, Ciudad Obregón, Sonora, México.
Centre Eau, Terre Et Environnement (INRS-ETE), Institut National de La Recherche Scientifique, Université du Québec, 490 Rue de La Couronne, Québec, QC, G1K 9A9, Canada.
Environ Sci Pollut Res Int. 2025 Jun;32(28):16793-16801. doi: 10.1007/s11356-024-34609-8. Epub 2024 Aug 6.
Hydrogen is a promising alternative to meet the world's energy demand in the future because of its energetic characteristics. Microbial electrolysis cell (MEC) produces hydrogen from organic matter using exoelectrogenic bacteria. Shewanella oneidensis stands out for having the capacity to produce hydrogen using different electron transfer mechanisms. The present research aims to evaluate the hydrogen production efficiency in a MEC inoculated with a pure culture of S. oneidensis in different operational conditions. Since the use of a catalyst accounts for most of the MEC cost, no catalyst was used for anode or cathode. Experiments were performed in semi-continuous and batch mode using different electrodes, voltages applied, and medium in aerobic and anaerobic conditions. The highest hydrogen production rate (HPR) was 0.107 m of H/mday obtained in a semi-continuous experiment using graphite plates and stainless steel electrodes. In batch experiments, a HPR occurred at 0.7 V, with a value of 0.048 m of H/mday versus 0.037 m of H/mday with 0.9 V. HPR was higher with carbon felt electrode (0.056 m of H/mday). However, current density dropped after 38 h, with carbon felt electrodes, and did not recover. Results of the present research showed that the MEC using a pure culture of S. oneidensis can be considered an alternative for hydrogen production without using a catalyst. Also, S. oneidensis produced hydrogen in both anaerobic and aerobic conditions with low methane production. Optimization can be proposed to improve hydrogen production based on the operational conditions tested in these experiments.
由于其能量特性,氢气是未来满足全球能源需求的一种有前景的替代能源。微生物电解池(MEC)利用产电细菌从有机物中产生氢气。奥奈达希瓦氏菌因其能够使用不同的电子转移机制产生氢气而脱颖而出。本研究旨在评估在不同操作条件下接种奥奈达希瓦氏菌纯培养物的MEC中的产氢效率。由于催化剂的使用占MEC成本的大部分,因此阳极或阴极均未使用催化剂。实验采用不同的电极、施加的电压以及在有氧和厌氧条件下的培养基,以半连续和批次模式进行。在使用石墨板和不锈钢电极的半连续实验中,获得的最高产氢速率(HPR)为0.107 m³H₂/m²·天。在批次实验中,HPR在0.7 V时出现,值为0.048 m³H₂/m²·天,而在0.9 V时为0.037 m³H₂/m²·天。使用碳毡电极时HPR更高(0.056 m³H₂/m²·天)。然而,使用碳毡电极时,电流密度在38小时后下降,且未恢复。本研究结果表明,使用奥奈达希瓦氏菌纯培养物的MEC可被视为一种不使用催化剂的产氢替代方案。此外,奥奈达希瓦氏菌在厌氧和好氧条件下均能产生氢气,且甲烷产量较低。可根据这些实验中测试的操作条件提出优化方案以提高产氢量。