Suppr超能文献

人工智能干预的临床评估。

Clinical Evaluation of Artificial Intelligence-Enabled Interventions.

机构信息

University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.

Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.

出版信息

Invest Ophthalmol Vis Sci. 2024 Aug 1;65(10):10. doi: 10.1167/iovs.65.10.10.

Abstract

Artificial intelligence (AI) health technologies are increasingly available for use in real-world care. This emerging opportunity is accompanied by a need for decision makers and practitioners across healthcare systems to evaluate the safety and effectiveness of these interventions against the needs of their own setting. To meet this need, high-quality evidence regarding AI-enabled interventions must be made available, and decision makers in varying roles and settings must be empowered to evaluate that evidence within the context in which they work. This article summarizes good practices across four stages of evidence generation for AI health technologies: study design, study conduct, study reporting, and study appraisal.

摘要

人工智能(AI)健康技术在现实护理中的应用越来越广泛。这一新兴机会伴随着医疗保健系统中决策者和从业者的需求,需要评估这些干预措施对其自身环境的安全性和有效性。为了满足这一需求,必须提供有关人工智能支持的干预措施的高质量证据,并且必须赋予不同角色和环境中的决策者在其工作背景下评估该证据的能力。本文总结了人工智能健康技术在证据生成的四个阶段的良好实践:研究设计、研究实施、研究报告和研究评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e434/11309043/6431dbf2aed5/iovs-65-10-10-f001.jpg

相似文献

1
Clinical Evaluation of Artificial Intelligence-Enabled Interventions.
Invest Ophthalmol Vis Sci. 2024 Aug 1;65(10):10. doi: 10.1167/iovs.65.10.10.
2
Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey.
BMC Med Inform Decis Mak. 2021 Jul 20;21(1):221. doi: 10.1186/s12911-021-01586-8.
6
7
Artificial intelligence (AI) and machine learning (ML) based decision support systems in mental health: An integrative review.
Int J Ment Health Nurs. 2023 Aug;32(4):966-978. doi: 10.1111/inm.13114. Epub 2023 Feb 6.
10
Review of study reporting guidelines for clinical studies using artificial intelligence in healthcare.
BMJ Health Care Inform. 2021 Aug;28(1). doi: 10.1136/bmjhci-2021-100385.

本文引用的文献

1
Consolidated Health Economic Evaluation Reporting Standards for Interventions That Use Artificial Intelligence (CHEERS-AI).
Value Health. 2024 Sep;27(9):1196-1205. doi: 10.1016/j.jval.2024.05.006. Epub 2024 May 23.
4
Evaluating the translation of implementation science to clinical artificial intelligence: a bibliometric study of qualitative research.
Front Health Serv. 2023 Jul 10;3:1161822. doi: 10.3389/frhs.2023.1161822. eCollection 2023.
5
Rams, hounds and white boxes: Investigating human-AI collaboration protocols in medical diagnosis.
Artif Intell Med. 2023 Apr;138:102506. doi: 10.1016/j.artmed.2023.102506. Epub 2023 Feb 8.
7
Tackling bias in AI health datasets through the STANDING Together initiative.
Nat Med. 2022 Nov;28(11):2232-2233. doi: 10.1038/s41591-022-01987-w.
10
Paying for artificial intelligence in medicine.
NPJ Digit Med. 2022 May 20;5(1):63. doi: 10.1038/s41746-022-00609-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验