Suppr超能文献

通过抑制带间电子-声子散射实现4H-碳化硅空穴迁移率的巨大增强。

Giant Enhancement of Hole Mobility for 4H-Silicon Carbide through Suppressing Interband Electron-Phonon Scattering.

作者信息

Sun Jianshi, Li Shouhang, Tong Zhen, Shao Cheng, An Meng, Zhu Xiongfei, Zhang Chuang, Chen Xiangchuan, Wang Renzong, Xiong Yucheng, Frauenheim Thomas, Liu Xiangjun

机构信息

Institute of Micro/Nano Electromechanical System and Integrated Circuit, College of Mechanical Engineering, Donghua University, Shanghai 201620, People's Republic of China.

Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France.

出版信息

Nano Lett. 2024 Aug 28;24(34):10569-10576. doi: 10.1021/acs.nanolett.4c02730. Epub 2024 Aug 6.

Abstract

4H-silicon carbide (4H-SiC) possesses a high Baliga figure of merit, making it a promising material for power electronics. However, its applications are limited by low hole mobility. Herein, we found that the hole mobility of 4H-SiC is mainly limited by the strong interband electron-phonon scattering using mode-level first-principles calculations. Our research indicates that applying compressive strain can reverse the sign of crystal-field splitting and change the ordering of electron bands close to the valence band maximum. Therefore, the interband electron-phonon scattering is severely suppressed and the electron group velocity is significantly increased. The out-of-plane hole mobility of 4H-SiC can be greatly enhanced by ∼200% with 2% uniaxial compressive strain applied. This work provides new insights into the electron transport mechanisms in semiconductors and suggests a strategy to improve hole mobility that could be applied to other semiconductors with hexagonal crystalline geometries.

摘要

4H 碳化硅(4H-SiC)具有较高的巴利加优值,使其成为电力电子领域一种很有前景的材料。然而,其应用受到低空穴迁移率的限制。在此,我们通过模式级第一性原理计算发现,4H-SiC 的空穴迁移率主要受带间电子 - 声子散射的限制。我们的研究表明,施加压缩应变可以反转晶体场分裂的符号,并改变接近价带最大值处电子能带的排序。因此,带间电子 - 声子散射受到严重抑制,电子群速度显著增加。施加 2% 的单轴压缩应变时,4H-SiC 的面外空穴迁移率可大幅提高约 200%。这项工作为半导体中的电子输运机制提供了新的见解,并提出了一种改善空穴迁移率的策略,该策略可应用于其他具有六方晶体几何结构的半导体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验