Suppr超能文献

代谢组学预测乳腺癌治疗诱导的神经和代谢毒性

Metabolomic Prediction of Breast Cancer Treatment-Induced Neurologic and Metabolic Toxicities.

机构信息

Medical Oncology Department, Centre Léon Bérard, Lyon, France.

Prevention and Public Health Department, Centre Léon Bérard, Lyon, France.

出版信息

Clin Cancer Res. 2024 Oct 15;30(20):4654-4666. doi: 10.1158/1078-0432.CCR-24-0195.

Abstract

PURPOSE

Long-term treatment-related toxicities, such as neurologic and metabolic toxicities, are major issues in breast cancer. We investigated the interest of metabolomic profiling to predict toxicities.

EXPERIMENTAL DESIGN

Untargeted high-resolution metabolomic profiles of 992 patients with estrogen receptor (ER)+/HER2- breast cancer from the prospective CANTO cohort were acquired (n = 1935 metabolites). A residual-based modeling strategy with discovery and validation cohorts was used to benchmark machine learning algorithms, taking into account confounding variables.

RESULTS

Adaptive Least Absolute Shrinkage and Selection (adaptive LASSO) has a good predictive performance, has limited optimism bias, and allows the selection of metabolites of interest for future translational research. The addition of low-frequency metabolites and nonannotated metabolites increases the predictive power. Metabolomics adds extra performance to clinical variables to predict various neurologic and metabolic toxicity profiles.

CONCLUSIONS

Untargeted high-resolution metabolomics allows better toxicity prediction by considering environmental exposure, metabolites linked to microbiota, and low-frequency metabolites.

摘要

目的

长期的治疗相关毒性,如神经毒性和代谢毒性,是乳腺癌的主要问题。我们研究了代谢组学分析预测毒性的意义。

实验设计

从前瞻性 CANTO 队列中获得了 992 例雌激素受体(ER)+/HER2-乳腺癌患者的非靶向高分辨率代谢组学图谱(n=1935 种代谢物)。采用基于残差的建模策略,结合发现和验证队列,利用机器学习算法进行基准测试,同时考虑混杂变量。

结果

自适应最小绝对收缩和选择(adaptive LASSO)具有良好的预测性能,具有有限的乐观偏差,并允许选择有前途的代谢物进行未来的转化研究。添加低频代谢物和未注释的代谢物可以提高预测能力。代谢组学通过考虑环境暴露、与微生物群相关的代谢物和低频代谢物,为临床变量提供了额外的性能,以预测各种神经毒性和代谢毒性特征。

结论

非靶向高分辨率代谢组学通过考虑环境暴露、与微生物群相关的代谢物和低频代谢物,能够更好地预测毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验