Suppr超能文献

早期类风湿关节炎的疾病活动与治疗反应:NORD - STAR队列中的探索性代谢组学分析

Disease activity and treatment response in early rheumatoid arthritis: an exploratory metabolomic profiling in the NORD-STAR cohort.

作者信息

Fatima Tahzeeb, Zhang Yuan, Vasileiadis Georgios K, Rawshani Araz, van Vollenhoven Ronald, Lampa Jon, Gudbjornsson Bjorn, Haavardsholm Espen A, Nordström Dan, Gröndal Gerdur, Hørslev-Petersen Kim, Lend Kristina, Heiberg Marte S, Hetland Merete Lund, Nurmohamed Michael, Østergaard Mikkel, Uhlig Till, Sokka-Isler Tuulikki, Rudin Anna, Maglio Cristina

机构信息

Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

出版信息

Arthritis Res Ther. 2025 Jul 26;27(1):156. doi: 10.1186/s13075-025-03616-6.

Abstract

BACKGROUND

The variability in treatment response in people with rheumatoid arthritis (RA) warrants the prediction of patients at high risk of treatment failure. Identification of biomarkers linked to clinical remission in RA is currently a challenge. Metabolomics may help to identify such biomarkers as it allows for a comprehensive exploration of disease-related variations that extends beyond the genome and proteome. This hypothesis-free exploratory metabolomics study aimed to profile serum metabolic alterations in early RA to understand the metabolic changes associated with disease activity and therapeutic response.

METHODS

The study included 220 early RA participants from the NORD-STAR study, randomized at baseline into four arms, ranging from conventional anti-rheumatic treatment to biological drugs: methotrexate combined with prednisolone (1), certolizumab (2), abatacept (3), or tocilizumab (4). Untargeted metabolomics was performed in serum samples at baseline and 24-week follow-up. Participants achieving clinical disease activity index remission at 24 weeks were defined as responders. Machine learning models for treatment response were constructed using random forest, logistic regression, support vector machine and extreme gradient boosting algorithms based on selected features.

RESULTS

We identified 278 metabolites, of which 39 were associated with baseline disease activity, including several acylcarnitines and amino acids. We also found 17 baseline metabolites associated with remission at 24 weeks in the overall cohort, including malic acid (β=-0.4), cytidine (β = 0.4), arginine (β = 0.3), and citrulline (β = 0.2), as well as specific metabolites and metabolic pathways associated with remission in the four treatment arms. Fifteen features were identified using machine learning-based multivariable selection. The best predictive model using logistic regression achieved AUC of 0.75 in training and 0.73 in the test set.

CONCLUSIONS

Our study has identified several baseline metabolites and metabolic pathways associated with disease activity and response to different treatments in early RA. By integrating metabolomics and clinical data, we developed predictive models for response to treatment in early RA, though their predictive performance remains limited.

摘要

背景

类风湿关节炎(RA)患者治疗反应的变异性使得预测治疗失败风险高的患者成为必要。目前,识别与RA临床缓解相关的生物标志物是一项挑战。代谢组学有助于识别此类生物标志物,因为它能够全面探索超出基因组和蛋白质组的疾病相关变异。这项无假设的探索性代谢组学研究旨在描绘早期RA患者血清代谢改变,以了解与疾病活动和治疗反应相关的代谢变化。

方法

该研究纳入了来自NORD - STAR研究的220名早期RA参与者,他们在基线时被随机分为四个治疗组,从传统抗风湿治疗到生物药物:甲氨蝶呤联合泼尼松龙(1组)、赛妥珠单抗(2组)、阿巴西普(3组)或托珠单抗(4组)。在基线和24周随访时对血清样本进行非靶向代谢组学分析。在24周时达到临床疾病活动指数缓解的参与者被定义为反应者。基于选定特征,使用随机森林、逻辑回归、支持向量机和极端梯度提升算法构建治疗反应的机器学习模型。

结果

我们鉴定出278种代谢物,其中39种与基线疾病活动相关,包括几种酰基肉碱和氨基酸。我们还在整个队列中发现了17种与24周缓解相关的基线代谢物,包括苹果酸(β = -0.4)、胞苷(β = 0.4)、精氨酸(β = 0.3)和瓜氨酸(β = 0.2),以及四个治疗组中与缓解相关的特定代谢物和代谢途径。通过基于机器学习的多变量选择确定了15个特征。使用逻辑回归的最佳预测模型在训练集中的AUC为0.75,在测试集中为0.73。

结论

我们的研究确定了几种与早期RA疾病活动和对不同治疗的反应相关的基线代谢物和代谢途径。通过整合代谢组学和临床数据,我们开发了早期RA治疗反应的预测模型,但其预测性能仍然有限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验