Suppr超能文献

自报告治疗性蛋白纳米颗粒。

Self-Reporting Therapeutic Protein Nanoparticles.

机构信息

Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48105, United States.

Biointerfaces Institute, Ann Arbor, Michigan 48105, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43350-43363. doi: 10.1021/acsami.4c09114. Epub 2024 Aug 6.

Abstract

We present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy. Depending on the mode of drug encapsulation, self-reporting protein nanoparticles revealed pronounced differences in their fluorescence lifetime signatures, which correlated with burst- vs diffusion-controlled release profiles observed in previous reports. Self-reporting nanoparticles, such as the ones developed here, will be critical for unraveling nanoparticle stability and nanoparticle-drug interactions, informing the future development of rationally engineered nanoparticle-based drug carriers.

摘要

我们提出了一种模块化策略,用于合成纳米粒子传感器,这些传感器配备了基于二硫代马来酰亚胺的荧光分子报告器,能够基于荧光寿命分析辨别粒子间化学环境的微小变化。借助定制的分子报告器合成了三种类型的纳米粒子,结果发现蛋白质纳米粒子对核环境变化的敏感性大于聚合物纳米凝胶和嵌段共聚物胶束。将疏水分子药物紫杉醇(PTX)包封在自报告蛋白质纳米粒子中会引起荧光寿命曲线的特征变化,通过时间分辨荧光光谱进行检测。根据药物包封的方式,自报告蛋白质纳米粒子在其荧光寿命特征上表现出明显的差异,这与以前报道中观察到的爆发式与扩散控制释放谱相关。自报告纳米粒子,如这里开发的纳米粒子,对于揭示纳米粒子稳定性和纳米粒子-药物相互作用至关重要,为合理设计基于纳米粒子的药物载体的未来发展提供信息。

相似文献

1
Self-Reporting Therapeutic Protein Nanoparticles.
ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43350-43363. doi: 10.1021/acsami.4c09114. Epub 2024 Aug 6.
2
Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery.
Int J Nanomedicine. 2015 Mar 16;10:2101-14. doi: 10.2147/IJN.S77667. eCollection 2015.
3
4
Self-assembled chitosan-ceramide nanoparticle for enhanced oral delivery of paclitaxel.
Pharm Res. 2014 Nov;31(11):3019-30. doi: 10.1007/s11095-014-1395-2. Epub 2014 May 14.
5
Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all-trans-retinoic acid and paclitaxel.
Carbohydr Polym. 2015 Sep 20;129:25-34. doi: 10.1016/j.carbpol.2015.04.036. Epub 2015 Apr 27.
6
Self-assembled polymeric nanoparticle of PEGylated chitosan-ceramide conjugate for systemic delivery of paclitaxel.
J Drug Target. 2014 Nov;22(9):813-21. doi: 10.3109/1061186X.2014.930469. Epub 2014 Jun 25.
7
Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers.
J Am Chem Soc. 2015 Feb 11;137(5):2056-66. doi: 10.1021/ja512616s. Epub 2015 Jan 28.
8
Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo.
Int J Pharm. 2014 Aug 25;471(1-2):525-35. doi: 10.1016/j.ijpharm.2014.05.032. Epub 2014 May 22.
9
Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy.
Sci China Life Sci. 2018 Apr;61(4):436-447. doi: 10.1007/s11427-017-9274-9. Epub 2018 Mar 19.
10
A multi-functional polymeric carrier for simultaneous positron emission tomography imaging and combination therapy.
Acta Biomater. 2018 Jul 15;75:312-322. doi: 10.1016/j.actbio.2018.06.010. Epub 2018 Jun 6.

本文引用的文献

1
Controlled Delivery of Paclitaxel via Stable Synthetic Protein Nanoparticles.
Adv Ther (Weinh). 2024 Nov;7(11). doi: 10.1002/adtp.202400208. Epub 2024 Jun 27.
2
Enhancing Dual-State Emission in Maleimide Fluorophores through Fluorocarbon Functionalisation.
Chemistry. 2022 Oct 18;28(58):e202201877. doi: 10.1002/chem.202201877. Epub 2022 Aug 24.
4
Dibromomaleimide End Functional Polymers by RAFT Polymerization Without the Need of Protecting Groups.
ACS Macro Lett. 2012 Jan 17;1(1):222-226. doi: 10.1021/mz200164x. Epub 2011 Dec 23.
5
Systematic studies into uniform synthetic protein nanoparticles.
Beilstein J Nanotechnol. 2022 Feb 28;13:274-283. doi: 10.3762/bjnano.13.22. eCollection 2022.
6
Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches.
Adv Sci (Weinh). 2022 Mar;9(8):e2104012. doi: 10.1002/advs.202104012. Epub 2022 Jan 25.
7
A Novel Quantum Dot-Based pH Probe for Long-Term Fluorescence Lifetime Imaging Microscopy Experiments in Living Cells.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):2578-2586. doi: 10.1021/acsami.1c19926. Epub 2022 Jan 10.
8
Nanoparticles in the clinic: An update post COVID-19 vaccines.
Bioeng Transl Med. 2021 Aug 13;6(3):e10246. doi: 10.1002/btm2.10246. eCollection 2021 Sep.
9
Engineering precision nanoparticles for drug delivery.
Nat Rev Drug Discov. 2021 Feb;20(2):101-124. doi: 10.1038/s41573-020-0090-8. Epub 2020 Dec 4.
10
Automation and data-driven design of polymer therapeutics.
Adv Drug Deliv Rev. 2021 Apr;171:1-28. doi: 10.1016/j.addr.2020.11.009. Epub 2020 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验