Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal.
Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; Centre of Chemistry, University of Minho, Braga 4710-057, Portugal; Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal.
Biomater Adv. 2024 Nov;164:213970. doi: 10.1016/j.bioadv.2024.213970. Epub 2024 Jul 27.
Orthopedic implant failures, primarily attributed to aseptic loosening and implant site infections, pose significant challenges to patient recovery and lead to revision surgeries. Combining piezoelectric materials with ionic liquids as interfaces for orthopedic implants presents an innovative approach to addressing both issues simultaneously. In this study, films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) incorporated with 1-ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO]) ionic liquid were developed. These films exhibited strong antibacterial properties, effectively reducing biofilm formation, thereby addressing implant-related infections. Furthermore, stem cell-based differentiation assays exposed the potential of the composite materials to induce osteogenesis. Interestingly, our findings also revealed the upregulation of calcium channel expression as a result of electromechanical stimulation, pointing to a mechanistic basis for the observed biological effects. This work highlights the potential of piezoelectric materials with ionic liquids to improve the longevity and biocompatibility of orthopedic implants. Offering dual-functionality for infection prevention and bone integration, these advancements hold significant potential for advancing orthopedic implant technologies and improving patient outcomes.
骨科植入物的失效主要归因于无菌性松动和植入部位感染,这对患者的康复带来了重大挑战,并导致了翻修手术。将压电材料与离子液体结合作为骨科植入物的界面,为同时解决这两个问题提供了一种创新方法。在这项研究中,制备了聚(偏二氟乙烯-三氟乙烯)(P(VDF-TrFE))与 1-乙基-3-甲基咪唑硫酸氢盐([Emim][HSO])离子液体复合的薄膜。这些薄膜表现出很强的抗菌性能,有效减少了生物膜的形成,从而解决了与植入物相关的感染问题。此外,基于干细胞的分化实验揭示了复合材料诱导成骨的潜力。有趣的是,我们的研究结果还表明,由于机电刺激,钙通道的表达上调,这为观察到的生物学效应提供了一个机制基础。这项工作强调了具有离子液体的压电材料在改善骨科植入物的耐久性和生物相容性方面的潜力。这些进展提供了抗感染和骨整合的双重功能,为骨科植入技术的进步和患者预后的改善提供了巨大的潜力。