Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA.
National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Cell. 2024 Sep 5;187(18):5048-5063.e25. doi: 10.1016/j.cell.2024.07.015. Epub 2024 Aug 5.
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.
目前尚不清楚 mRNA 在细胞质中是否发挥结构作用。在这里,我们报告了脆性 X 相关蛋白 1(FXR1)网络,这是一个存在于整个细胞质中的 mRNA-蛋白(mRNP)网络,由 FXR1 介导的异常长 mRNA 的包装形成。这些 mRNA 作为潜在的凝聚物支架,并浓缩 FXR1 分子。FXR1 网络包含多个蛋白质结合位点,并作为相互作用蛋白的信号支架发挥作用。我们表明,它对于 RhoA 信号诱导的肌动球蛋白重排以提供激酶与其底物之间的空间接近性是必要的。在其同源物 FMR1 中发现的 FXR1 中的点突变导致脆性 X 综合征,破坏了该网络。FXR1 网络的破坏阻止了肌动球蛋白的重塑——这是调节细胞形状、迁移和突触功能的基本和普遍过程。我们的发现揭示了细胞质 mRNA 的结构作用,并展示了作为 FXR1 网络一部分的 FXR1 RNA 结合蛋白如何作为信号反应的组织者发挥作用。