Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903.
Genetically Engineered Mouse Model Core, University of Virginia, Charlottesville, Virginia 22903.
J Neurosci. 2024 Sep 4;44(36):e0799242024. doi: 10.1523/JNEUROSCI.0799-24.2024.
An interoceptive homeostatic reflex monitors levels of CO/H to maintain blood gas homeostasis and rapidly regulate tissue acid-base balance by driving lung ventilation and CO excretion-this CO-evoked increase in respiration is the hypercapnic ventilatory reflex (HCVR). Retrotrapezoid nucleus (RTN) neurons provide crucial excitatory drive to downstream respiratory rhythm/pattern-generating circuits, and their activity is directly modulated by changes in CO/H RTN neurons express GPR4 and TASK-2, global deletion of which abrogates CO/H activation of RTN neurons and the HCVR. It has not been determined if the intrinsic pH sensitivity of these proton detectors is required for these effects. We used CRISPR/Cas9 genome editing to generate mice with mutations in either of two pH-sensing histidine residues in GPR4 to determine effects on RTN neuronal CO/H sensitivity and the HCVR. In global GPR4(H81F) and GPR4(H167F) mice, CO-stimulated breathing and CO-induced RTN neuronal activation were strongly blunted, with no effect on hypoxia-stimulated breathing. In brainstem slices from GPR4(H81F) mice, peak firing of RTN neurons during bath acidification was significantly reduced compared with GPR4 wild-type mice, and a subpopulation of RTN neurons was rendered pH-insensitive, phenocopying previous results from GPR4-deleted mice. These effects were independent of changes in RTN number/distribution, neuronal excitability or transcript levels for GPR4 and TASK-2. CO-stimulated breathing was reduced to a similar extent in GPR4(H81F) and TASK-2-deleted mice, with combined mutation yielding no additional deficit in the HCVR. Together, these data demonstrate that the intrinsic pH sensitivity of GPR4 is necessary for full elaboration of the HCVR.
一种内感受性稳态反射监测 CO/H 的水平,以维持血气稳态,并通过驱动肺通气和 CO 排泄来快速调节组织酸碱平衡——这种 CO 引起的呼吸增加是高碳酸通气反射(HCVR)。Retrotrapezoid 核(RTN)神经元为下游呼吸节律/模式生成回路提供关键的兴奋驱动,其活动直接受到 CO/H 的变化调节。RTN 神经元表达 GPR4 和 TASK-2,其活性被 CO/H 直接调节。RTN 神经元中这些质子探测器的固有 pH 敏感性是否对这些效应是必需的尚未确定。我们使用 CRISPR/Cas9 基因组编辑生成了 GPR4 中两个 pH 敏感组氨酸残基中的任一个发生突变的小鼠,以确定这些突变对 RTN 神经元 CO/H 敏感性和 HCVR 的影响。在全局 GPR4(H81F)和 GPR4(H167F)小鼠中,CO 刺激呼吸和 CO 诱导的 RTN 神经元激活明显减弱,对低氧刺激呼吸没有影响。在 GPR4(H81F)小鼠的脑片上,与 GPR4 野生型小鼠相比,RTN 神经元在浴酸化期间的峰值放电显著减少,并且亚群的 RTN 神经元变得对 pH 不敏感,这与先前从 GPR4 缺失小鼠获得的结果相似。这些效应独立于 RTN 数量/分布、神经元兴奋性或 GPR4 和 TASK-2 的转录水平的变化。在 GPR4(H81F)和 TASK-2 缺失小鼠中,CO 刺激呼吸的减少程度相似,联合突变对 HCVR 没有额外的缺陷。总之,这些数据表明 GPR4 的固有 pH 敏感性对于 HCVR 的完全表达是必需的。