Suppr超能文献

用于预测路基土回弹模量强度的机器学习模型开发:遗传算法和人工神经网络方法

Development of machine learning models for forecasting the strength of resilient modulus of subgrade soil: genetic and artificial neural network approaches.

作者信息

Khawaja Laiba, Asif Usama, Onyelowe Kennedy, Al Asmari Abdullah F, Khan Daud, Javed Muhammad Faisal, Alabduljabbar Hisham

机构信息

COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.

Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan.

出版信息

Sci Rep. 2024 Aug 6;14(1):18244. doi: 10.1038/s41598-024-69316-4.

Abstract

Accurately predicting the Modulus of Resilience (M) of subgrade soils, which exhibit non-linear stress-strain behaviors, is crucial for effective soil assessment. Traditional laboratory techniques for determining M are often costly and time-consuming. This study explores the efficacy of Genetic Programming (GEP), Multi-Expression Programming (MEP), and Artificial Neural Networks (ANN) in forecasting MR using 2813 data records while considering six key parameters. Several Statistical assessments were utilized to evaluate model accuracy. The results indicate that the GEP model consistently outperforms MEP and ANN models, demonstrating the lowest error metrics and highest correlation indices (R). During training, the GEP model achieved an R value of 0.996, surpassing the MEP (R = 0.97) and ANN (R = 0.95) models. Sensitivity and SHAP (SHapley Additive exPlanations) analysis were also performed to gain insights into input parameter significance. Sensitivity analysis revealed that confining stress (21.6%) and dry density (26.89%) are the most influential parameters in predicting MR. SHAP analysis corroborated these findings, highlighting the critical impact of these parameters on model predictions. This study underscores the reliability of GEP as a robust tool for precise M prediction in subgrade soil applications, providing valuable insights into model performance and parameter significance across various machine-learning (ML) approaches.

摘要

准确预测表现出非线性应力-应变行为的路基土的回弹模量(M),对于有效的土壤评估至关重要。传统的测定M的实验室技术通常成本高昂且耗时。本研究探讨了基因编程(GEP)、多表达式编程(MEP)和人工神经网络(ANN)在考虑六个关键参数的情况下,利用2813条数据记录预测回弹模量(MR)的有效性。采用了几种统计评估方法来评估模型的准确性。结果表明,GEP模型始终优于MEP和ANN模型,显示出最低的误差指标和最高的相关指数(R)。在训练过程中,GEP模型的R值达到0.996,超过了MEP(R = 0.97)和ANN(R = 0.95)模型。还进行了敏感性分析和SHAP(SHapley加性解释)分析,以深入了解输入参数的重要性。敏感性分析表明,围压(21.6%)和干密度(26.89%)是预测MR时最具影响力的参数。SHAP分析证实了这些发现,突出了这些参数对模型预测的关键影响。本研究强调了GEP作为一种可靠工具在路基土应用中精确预测M的可靠性,为各种机器学习(ML)方法的模型性能和参数重要性提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b426/11303719/da3f7815d03c/41598_2024_69316_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验