Jedidi Abdesslem, Alamri Shatha M, Alotaibi Norah O, Goumri-Said Souraya, Kanoun Mohammed Benali
Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Physics Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia.
Phys Chem Chem Phys. 2024 Aug 22;26(33):21982-21989. doi: 10.1039/d4cp02426e.
The solar cell and light-emitting device research community is currently focusing on investigating two-dimensional (2D) hybrid perovskite materials owing to their remarkable stability and intriguing optoelectronic characteristics, which hold significant promise for various applications. In general, the introduction of chirality in hybrid perovskites arises from symmetry breaking within their inorganic frameworks. Nevertheless, despite this understanding, the specific factors driving the observed increase in splitting remain obscure due to a lack of comprehensive investigations. Our research delves into the electronic properties of 2D layered hybrid perovskites, considering their behavior with and without spin-orbit coupling. We specifically focus on effect of Rashba splitting and the impact of electronic structure variation across a range of chiral perovskites by introducing chiral organic cations with differing degrees of π-conjugation, resulting in significant changes in spin-splitting magnitude. Systematic first principles investigations confirm that the distortion of the cage and -spacing of chiral perovskites are crucial design parameters for achieving strong spin-splitting in 2D layered perovskites. Furthermore, our investigation reveals that these systems exhibit remarkable absorption capabilities in the visible light spectrum, as demonstrated by their computed optoelectronic characteristics. The chiral perovskites described in this study, which exhibit substantial spin-splitting, present a distinctive prototype with potential implications for spintronics and photovoltaics.
由于二维(2D)杂化钙钛矿材料具有卓越的稳定性和引人入胜的光电特性,太阳能电池和发光器件研究领域目前正专注于对其进行研究,这些特性使其在各种应用中具有巨大潜力。一般来说,杂化钙钛矿中手性的引入源于其无机骨架内的对称性破缺。然而,尽管有这种认识,但由于缺乏全面的研究,导致观察到的分裂增加的具体因素仍不清楚。我们的研究深入探讨了二维层状杂化钙钛矿的电子性质,考虑了有无自旋轨道耦合时它们的行为。我们特别关注通过引入具有不同程度π共轭的手性有机阳离子,研究Rashba分裂的影响以及一系列手性钙钛矿中电子结构变化的影响,这导致自旋分裂幅度发生显著变化。系统的第一性原理研究证实,手性钙钛矿的笼状结构畸变和间距是在二维层状钙钛矿中实现强自旋分裂的关键设计参数。此外,我们的研究表明,这些体系在可见光谱中表现出显著的吸收能力,这从它们计算出的光电特性中得到了证明。本研究中描述的手性钙钛矿表现出大量的自旋分裂,为自旋电子学和光伏领域提供了一个具有潜在意义的独特原型。