Suppr超能文献

通过深度学习对单个急性髓系白血病患者的死亡风险进行高时间分辨率预测。

High temporal resolution prediction of mortality risk for single AML patient via deep learning.

作者信息

Lei Yang, Wei Hui, Gao Xin

机构信息

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.

Tianjin Institutes of Health Science, Tianjin 301600, China.

出版信息

iScience. 2024 Jul 5;27(8):110458. doi: 10.1016/j.isci.2024.110458. eCollection 2024 Aug 16.

Abstract

Acute myeloid leukemia (AML) is highly heterogeneous, necessitating personalized prognosis prediction and treatment strategies. Many of the current patient classifications are based on molecular features. Here, we classified the primary AML patients by predicted death risk curves and investigated the survival-directly-related molecular features. We developed a deep learning model to predict 5-year continuous-time survival probabilities for each patient and converted them to death risk curves. This method captured disease progression dynamics with high temporal resolution and identified seven patient groups with distinct risk peak timing. Based on clusters of death risk curves, we identified two robust AML prognostic biomarkers and discovered a subgroup within the European LeukemiaNet (ELN) 2017 Favorable category with an extremely poor prognosis. Additionally, we developed a web tool, De novo AML Prognostic Prediction (DAPP), for individualized prognosis prediction and expression perturbation simulation. This study utilized deep learning-based continuous-time risk modeling coupled with clustering-predicted risk distributions, facilitating dissecting time-specific molecular features of disease progression.

摘要

急性髓系白血病(AML)具有高度异质性,因此需要个性化的预后预测和治疗策略。当前许多患者分类是基于分子特征。在此,我们通过预测死亡风险曲线对原发性AML患者进行分类,并研究与生存直接相关的分子特征。我们开发了一种深度学习模型来预测每位患者的5年连续时间生存概率,并将其转换为死亡风险曲线。该方法以高时间分辨率捕捉疾病进展动态,识别出七个具有不同风险峰值时间的患者组。基于死亡风险曲线聚类,我们确定了两个可靠的AML预后生物标志物,并在欧洲白血病网络(ELN)2017年有利类别中发现了一个预后极差的亚组。此外,我们开发了一个网络工具,即新发AML预后预测(DAPP),用于个性化预后预测和表达扰动模拟。本研究利用基于深度学习的连续时间风险建模以及聚类预测的风险分布,有助于剖析疾病进展的特定时间分子特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bda/11301082/3576cdf1f8b3/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验