Straube Axel, Coburger Peter, Hey-Hawkins Evamarie
Institute of Inorganic Chemistry, Leipzig University Johannisallee 29 D-04103 Leipzig Germany
RSC Adv. 2024 Aug 6;14(34):24652-24660. doi: 10.1039/d4ra03822c. eCollection 2024 Aug 5.
Homotrinuclear complexes of the -symmetric tris(ferrocenyl)arene-based tris-phosphanes 1a-d with ruthenium(ii) ([1a-d(Ru)]) and rhodium(i) ([1a-d(Rh)]) were prepared and fully characterised. Complexes [1a-d(Ru)] and [1a-d(Rh)] are electrochemically active. The nature of the arene core in 1a-d ranging from benzene, 1,3,5-trifluorobenzene and mesitylene to -triazine allows to fine-tune the exact oxidation potentials for tailoring the electrochemical response. With a BAr -based supporting electrolyte, a distinct separation of the three iron-centred oxidations of the ligand backbone is observable. Under these conditions, these oxidations are mostly reversible but, especially for the third oxidation, already show signs of irreversibility. In general, while the coordinated metal complex fragment does not strongly alter the electrochemical response of the arene-trisferrocenyl core 1a-d, there are observable differences. Rhodium(i) complexes are oxidised at slightly higher potentials than ruthenium(ii) complexes. In both cases, individual oxidation states for the CH(CH)-based ligand (1d) are difficult to address and the CN-based ligand (1c) shows the most complicated and least reversible electrochemistry with severely broadened third oxidations and reduced reversibility in cyclic voltammetry. The most well-suited system for potential applications in redox-switchable catalysis, in all cases, is the CH-based ligand (1a), showing entirely reversible and well-separated redox events.
制备并充分表征了基于对称三(二茂铁基)芳烃的三膦 1a - d 与钌(II)([1a - d(Ru)])和铑(I)([1a - d(Rh)])的同核配合物。配合物 [1a - d(Ru)] 和 [1a - d(Rh)] 具有电化学活性。1a - d 中芳烃核心从苯、1,3,5 - 三氟苯、均三甲苯到 - 三嗪的性质变化使得能够微调精确的氧化电位以定制电化学响应。使用基于 BAr 的支持电解质时,可以观察到配体主链的三个以铁为中心的氧化过程有明显分离。在这些条件下,这些氧化大多是可逆的,但特别是对于第三次氧化,已经显示出不可逆的迹象。一般来说,虽然配位的金属配合物片段不会强烈改变芳烃 - 三二茂铁基核心 1a - d 的电化学响应,但仍存在可观察到的差异。铑(I)配合物的氧化电位略高于钌(II)配合物。在这两种情况下,基于 CH(CH) 的配体(1d)的各个氧化态难以确定,而基于 CN 的配体(1c)表现出最复杂且最不可逆的电化学,其第三次氧化严重展宽且循环伏安法中的可逆性降低。在所有情况下,最适合用于氧化还原可切换催化潜在应用的体系是基于 CH 的配体(1a),它显示出完全可逆且分离良好的氧化还原事件。