Suppr超能文献

探讨临床牙周病预后系统和机器学习预后模型之间在预测失牙准确性方面的差异。

Exploring the accuracy of tooth loss prediction between a clinical periodontal prognostic system and a machine learning prognostic model.

机构信息

Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.

Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.

出版信息

J Clin Periodontol. 2024 Oct;51(10):1333-1341. doi: 10.1111/jcpe.14023. Epub 2024 Aug 7.

Abstract

AIM

The aim of this analysis was to compare a clinical periodontal prognostic system and a developed and externally validated artificial intelligence (AI)-based model for the prediction of tooth loss in periodontitis patients under supportive periodontal care (SPC) for 10 years.

MATERIALS AND METHODS

Clinical and radiographic parameters were analysed to assign tooth prognosis with a tooth prognostic system (TPS) by two calibrated examiners from different clinical centres (London and Pittsburgh). The prediction model was developed on the London dataset. A logistic regression model (LR) and a neural network model (NN) were developed to analyse the data. These models were externally validated on the Pittsburgh dataset. The primary outcome was 10-year tooth loss in teeth assigned with 'unfavourable' prognosis.

RESULTS

A total of 1626 teeth in 69 patients were included in the London cohort (development cohort), while 2792 teeth in 116 patients were included in the Pittsburgh cohort (external validated dataset). While the TPS in the validation cohort exhibited high specificity (99.96%), moderate positive predictive value (PPV = 50.0%) and very low sensitivity (0.85%), the AI-based model showed moderate specificity (NN = 52.26%, LR = 67.59%), high sensitivity (NN = 98.29%, LR = 91.45%), and high PPV (NN = 89.1%, LR = 88.6%).

CONCLUSIONS

AI-based models showed comparable results with the clinical prediction model, with a better performance in specific prognostic risk categories, confirming AI prediction model as a promising tool for the prediction of tooth loss.

摘要

目的

本分析旨在比较一种临床牙周预后系统和一种经过开发和外部验证的人工智能(AI)基于模型,以预测接受牙周支持治疗(SPC)的牙周炎患者在 10 年内的牙齿缺失。

材料和方法

对临床和影像学参数进行分析,以通过来自不同临床中心(伦敦和匹兹堡)的两名校准检查者用牙周预后系统(TPS)分配牙齿预后。预测模型是在伦敦数据集上开发的。开发了逻辑回归模型(LR)和神经网络模型(NN)来分析数据。这些模型在匹兹堡数据集上进行了外部验证。主要结果是 10 年内分配给“不利”预后的牙齿的缺失。

结果

共纳入 69 例患者的 1626 颗牙齿(伦敦队列,即开发队列),纳入 116 例患者的 2792 颗牙齿(匹兹堡队列,即外部验证数据集)。虽然验证队列中的 TPS 具有高特异性(99.96%)、中等阳性预测值(PPV=50.0%)和极低的敏感性(0.85%),但基于 AI 的模型显示中等特异性(NN=52.26%,LR=67.59%)、高敏感性(NN=98.29%,LR=91.45%)和高 PPV(NN=89.1%,LR=88.6%)。

结论

基于 AI 的模型与临床预测模型的结果相当,在特定的预后风险类别中表现更好,证实 AI 预测模型是预测牙齿缺失的一种有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验