Suppr超能文献

使用无染色数字病理评估对代谢功能障碍相关脂肪性肝病进行预后预测

Outcome prediction in metabolic dysfunction-associated steatotic liver disease using stain-free digital pathological assessment.

作者信息

Kendall Timothy J, Chng Elaine, Ren Yayun, Tai Dean, Ho Gideon, Fallowfield Jonathan A

机构信息

Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.

Edinburgh Pathology, University of Edinburgh, Edinburgh, UK.

出版信息

Liver Int. 2024 Oct;44(10):2511-2516. doi: 10.1111/liv.16062. Epub 2024 Aug 7.

Abstract

Computational quantification reduces observer-related variability in histological assessment of metabolic dysfunction-associated steatotic liver disease (MASLD). We undertook stain-free imaging using the SteatoSITE resource to generate tools directly predictive of clinical outcomes. Unstained liver biopsy sections (n = 452) were imaged using second-harmonic generation/two-photon excitation fluorescence (TPEF) microscopy, and all-cause mortality and hepatic decompensation indices constructed. The mortality index had greater predictive power for all-cause mortality (index >.14 vs. </=.14, HR 4.49, p = .003) than the non-alcoholic steatohepatitis-Clinical Research Network (NASH-CRN) (hazard ratio (HR) 3.41, 95% confidence intervals (CI) 1.43-8.15, p = .003) and qFibrosis stage (HR 3.07, 95% CI 1.30-7.26, p = .007). The decompensation index had greater predictive power for decompensation events (index >.31 vs. </=.31, HR 5.96, p < .001) than the NASH-CRN (HR 3.65, 95% CI 1.81-7.35, p < .001) or qFibrosis stage (HR 3.59, 95% CI 1.79-7.20, p < .001). These tools directly predict hard endpoints in MASLD, without relying on ordinal fibrosis scores as a surrogate, and demonstrate predictive value at least equivalent to traditional or computational ordinal fibrosis scores.

摘要

计算量化减少了代谢功能障碍相关脂肪性肝病(MASLD)组织学评估中与观察者相关的变异性。我们使用SteatoSITE资源进行无染色成像,以生成可直接预测临床结果的工具。使用二次谐波产生/双光子激发荧光(TPEF)显微镜对未染色的肝活检切片(n = 452)进行成像,并构建全因死亡率和肝失代偿指数。死亡率指数对全因死亡率的预测能力(指数>.14 vs.</=.14,HR 4.49,p = .003)高于非酒精性脂肪性肝炎临床研究网络(NASH-CRN)(风险比(HR)3.41,95%置信区间(CI)1.43 - 8.15,p = .003)和qFibrosis分期(HR 3.07,95%CI 1.30 - 7.26,p = .007)。失代偿指数对失代偿事件的预测能力(指数>.31 vs.</=.31,HR 5.96,p < .001)高于NASH-CRN(HR 3.65,95%CI 1.81 - 7.35,p < .001)或qFibrosis分期(HR 3.59,95%CI 1.79 - 7.20,p < .001)。这些工具可直接预测MASLD中的硬终点,无需依赖序数纤维化评分作为替代指标,并且显示出至少与传统或计算序数纤维化评分相当的预测价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验