School of Computer Science and Artificial Intelligence & Aliyun Big Data, Changzhou University, Changzhou, China.
School of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China.
J Comput Biol. 2024 Sep;31(9):886-906. doi: 10.1089/cmb.2024.0587. Epub 2024 Aug 7.
Small molecules (SMs) play a pivotal role in regulating microRNAs (miRNAs). Existing prediction methods for associations between SM-miRNA have overlooked crucial aspects: the incorporation of local topological features between nodes, which represent either SMs or miRNAs, and the effective fusion of node features with topological features. This study introduces a novel approach, termed high-order topological features for SM-miRNA association prediction (HTFSMMA), which specifically addresses these limitations. Initially, an association graph is formed by integrating SM-miRNA association data, SM similarity, and miRNA similarity. Subsequently, we focus on the local information of links and propose target neighborhood graph convolutional network for extracting local topological features. Then, HTFSMMA employs graph attention networks to amalgamate these local features, thereby establishing a platform for the acquisition of high-order features through random walks. Finally, the extracted features are integrated into the multilayer perceptron to derive the association prediction scores. To demonstrate the performance of HTFSMMA, we conducted comprehensive evaluations including five-fold cross-validation, leave-one-out cross-validation (LOOCV), SM-fixed local LOOCV, and miRNA-fixed local LOOCV. The area under receiver operating characteristic curve values were 0.9958 ± 0.0024 (0.8722 ± 0.0021), 0.9986 (0.9504), 0.9974 (0.9111), and 0.9977 (0.9074), respectively. Our findings demonstrate the superior performance of HTFSMMA over existing approaches. In addition, three case studies and the DeLong test have confirmed the effectiveness of the proposed method. These results collectively underscore the significance of HTFSMMA in facilitating the inference of associations between SMs and miRNAs.
小分子 (SMs) 在调节 microRNAs (miRNAs) 方面发挥着关键作用。现有的 SM-miRNA 关联预测方法忽略了一些重要方面:即未能整合节点之间的局部拓扑特征,这些节点代表 SMs 或 miRNAs;也未能有效地融合节点特征和拓扑特征。本研究提出了一种新的方法,称为用于 SM-miRNA 关联预测的高阶拓扑特征 (HTFSMMA),专门解决这些局限性。首先,通过整合 SM-miRNA 关联数据、SM 相似性和 miRNA 相似性来构建关联图。然后,我们专注于链接的局部信息,并提出目标邻域图卷积网络来提取局部拓扑特征。接下来,HTFSMMA 使用图注意力网络来融合这些局部特征,从而通过随机游走建立获取高阶特征的平台。最后,将提取的特征集成到多层感知机中,以得出关联预测分数。为了验证 HTFSMMA 的性能,我们进行了全面的评估,包括五折交叉验证、留一法交叉验证 (LOOCV)、SM 固定局部 LOOCV 和 miRNA 固定局部 LOOCV。接收者操作特征曲线下面积值分别为 0.9958±0.0024(0.8722±0.0021)、0.9986(0.9504)、0.9974(0.9111)和 0.9977(0.9074)。我们的研究结果表明,HTFSMMA 的性能优于现有的方法。此外,三项案例研究和 DeLong 检验证实了所提出方法的有效性。这些结果共同强调了 HTFSMMA 在促进 SMs 和 miRNAs 之间关联推断方面的重要性。