Suppr超能文献

SNMFSMMA:利用对称非负矩阵分解和 Kronecker 正则化最小二乘法预测潜在小分子-microRNA 关联。

SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.

出版信息

RNA Biol. 2020 Feb;17(2):281-291. doi: 10.1080/15476286.2019.1694732. Epub 2019 Nov 27.

Abstract

Accumulating studies have shown that microRNAs (miRNAs) could be used as targets of small-molecule (SM) drugs to treat diseases. In recent years, researchers have proposed many computational models to reveal miRNA-SM associations due to the huge cost of experimental methods. Considering the shortcomings of the previous models, such as the prediction accuracy of some models is low or some cannot be applied for new SMs (miRNAs), we developed a novel model named Symmetric Nonnegative Matrix Factorization for Small Molecule-MiRNA Association prediction (SNMFSMMA). Different from some models directly applying the integrated similarities, SNMFSMMA first performed matrix decomposition on the integrated similarity matrixes, and calculated the Kronecker product of the new integrated similarity matrixes to obtain the SM-miRNA pair similarity. Further, we applied regularized least square to obtain the mapping function of the SM-miRNA pairs to the associated probabilities by minimizing the objective function. On the basis of Dataset 1 and 2 extracted from SM2miR v1.0 database, we implemented global leave-one-out cross validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV and 5-fold cross-validation to evaluate the prediction performance. Finally, the AUC values obtained by SNMFSMMA in these validation reached 0.9711 (0.8895), 0.9698 (0.8884), 0.8329 (0.7651) and 0.9644 ± 0.0035 (0.8814 ± 0.0033) based on Dataset 1 (Dataset 2), respectively. In the first case study, 5 of the top 10 associations predicted were confirmed. In the second, 7 and 8 of the top 10 predicted miRNAs related with 5-FU and 5-Aza-2'-deoxycytidine were confirmed. These results demonstrated the reliable predictive power of SNMFSMMA.

摘要

已有研究表明,微小 RNA(miRNA)可作为小分子(SM)药物的靶点用于治疗疾病。近年来,由于实验方法成本高昂,研究人员提出了许多计算模型来揭示 miRNA-SM 关联。考虑到之前模型的缺点,如某些模型的预测准确性较低或某些模型不能应用于新的 SM(miRNAs),我们开发了一种新的模型,称为小分子 miRNA 关联预测的对称非负矩阵分解(Symmetric Nonnegative Matrix Factorization for Small Molecule-MiRNA Association prediction,SNMFSMMA)。与一些直接应用综合相似度的模型不同,SNMFSMMA 首先对综合相似度矩阵进行矩阵分解,然后计算新综合相似度矩阵的 Kronecker 积以获得 SM-miRNA 对相似度。进一步,我们通过最小化目标函数,应用正则化最小二乘法获得 SM-miRNA 对与关联概率的映射函数。在 SM2miR v1.0 数据库中提取的数据集 1 和数据集 2 的基础上,我们分别进行了全局留一法交叉验证(LOOCV)、miRNA 固定局部 LOOCV、SM 固定局部 LOOCV 和 5 折交叉验证来评估预测性能。最后,SNMFSMMA 在这些验证中获得的 AUC 值分别为 0.9711(0.8895)、0.9698(0.8884)、0.8329(0.7651)和 0.9644±0.0035(0.8814±0.0033),基于数据集 1(数据集 2)。在第一个案例研究中,预测的前 10 个关联中有 5 个得到了验证。在第二个案例中,与 5-FU 和 5-Aza-2'-脱氧胞苷相关的前 10 个预测 miRNA 中有 7 个和 8 个得到了验证。这些结果表明了 SNMFSMMA 的可靠预测能力。

相似文献

引用本文的文献

4
Predict lncRNA-drug associations based on graph neural network.基于图神经网络预测长链非编码RNA-药物关联。
Front Genet. 2024 Apr 26;15:1388015. doi: 10.3389/fgene.2024.1388015. eCollection 2024.

本文引用的文献

1
Ensemble of decision tree reveals potential miRNA-disease associations.决策树集成揭示潜在的 miRNA-疾病关联。
PLoS Comput Biol. 2019 Jul 22;15(7):e1007209. doi: 10.1371/journal.pcbi.1007209. eCollection 2019 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验