Tao Jin-Gang-Lu, Chen Jiaxu, Zhao Bin, Feng Renfei, Shakouri Mohsen, Chen Feng
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Small. 2024 Nov;20(46):e2402492. doi: 10.1002/smll.202402492. Epub 2024 Aug 7.
Enhancing active states on the catalyst surface by modulating the adsorption-desorption properties of reactant species is crucial to optimizing the electrocatalytic activity of transition metal-based nanostructured materials. In this work, an efficient optimization strategy is proposed by co-modulating the dual anions (C and S) in NiC/NiS, the heterostructured electrocatalyst, which is prepared via a simple hot-injection method. The presence of NiC/NiS heterojunctions accelerates the charge carrier transfer and promotes the generation of active sites, enabling the heterostructured electrocatalyst to achieve current densities of 10/100 mA cm at 1.37 V/1.53 V. The Faradaic efficiencies for formate production coupled with hydrogen evolution approach 100%, accompanied with a stability record of 350 h. Additionally, operando electrochemical impedance spectroscopy (EIS), in situ Raman spectroscopy, and density functional theory (DFT) calculations further demonstrate that the creation of NiC/NiS heterointerfaces originating from dual anions' (C and S) differentiation is effective in adjusting the d-band center of active Ni atoms, promoting the generation of active sites, as well as optimizing the adsorption and desorption of reaction intermediates. This dual anions co-modulation strategy to stable heterostructure provides a general route for constructing high-performance transition metal-based electrocatalysts.
通过调节反应物物种的吸附-脱附特性来增强催化剂表面的活性状态对于优化过渡金属基纳米结构材料的电催化活性至关重要。在这项工作中,我们提出了一种有效的优化策略,即通过共调节异质结构电催化剂NiC/NiS中的双阴离子(C和S),该催化剂通过简单的热注入法制备。NiC/NiS异质结的存在加速了电荷载流子的转移并促进了活性位点的产生,使该异质结构电催化剂在1.37 V/1.53 V时实现了10/100 mA cm的电流密度。甲酸生成与析氢耦合的法拉第效率接近100%,同时具有350 h的稳定性记录。此外,原位电化学阻抗谱(EIS)、原位拉曼光谱和密度泛函理论(DFT)计算进一步表明,源自双阴离子(C和S)差异的NiC/NiS异质界面的形成有效地调节了活性Ni原子的d带中心,促进了活性位点的产生,并优化了反应中间体的吸附和解吸。这种用于稳定异质结构的双阴离子共调节策略为构建高性能过渡金属基电催化剂提供了一条通用途径。