Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA.
mSphere. 2024 Aug 28;9(8):e0010324. doi: 10.1128/msphere.00103-24. Epub 2024 Aug 7.
Antibiotic therapy alters bacterial abundance and metabolism in the gut microbiome, leading to dysbiosis and opportunistic infections. () is both a commensal in the gut and an opportunistic pathogen in other body sites. Past work has shown that responds to β-lactam treatment differently depending on the metabolic environment both and . Studies of other bacteria show that an increase in respiratory metabolism independent of growth rate promotes susceptibility to bactericidal antibiotics. We propose that enters a protected state linked to an increase in polysaccharide utilization and a decrease in the use of simple sugars. Here, we apply antibiotic susceptibility testing, transcriptomic analysis, and genetic manipulation to characterize this polysaccharide-mediated tolerance (PM tolerance) phenotype. We found that a variety of mono- and disaccharides increased the susceptibility of to several different β-lactams compared to polysaccharides. Transcriptomics indicated a metabolic shift from reductive to oxidative branches of the tricarboxylic acid cycle on polysaccharides. Accordingly, supplementation with intermediates of central carbon metabolism had varying effects on PM tolerance. Transcriptional analysis also showed a decrease in the expression of the electron transport chain (ETC) protein NQR and an increase in the ETC protein NUO, when given fiber versus glucose. Deletion of NQR increased susceptibility while deletion of NUO and a third ETC protein NDH2 had no effect. This work confirms that carbon source utilization modulates antibiotic susceptibility in and that anaerobic respiratory metabolism and the ETC play an essential role.IMPORTANCEAntibiotics are indispensable medications that revolutionized modern medicine. However, their effectiveness is challenged by a large array of resistance and tolerance mechanisms. Treatment with antibiotics also disrupts the gut microbiome which can adversely affect health. are prevalent in the gut microbiome and yet are frequently involved in anaerobic infections. Thus, understanding how antibiotics affect these bacteria is necessary to implement proper treatment. Recent work has investigated the role of metabolism in antibiotic susceptibility in distantly related bacteria such as . Using antibiotic susceptibility testing, transcriptomics, and genetic manipulation, we demonstrate that polysaccharides reduce β-lactam susceptibility when compared to monosaccharides. This finding underscores the profound impact of metabolic adaptation on the therapeutic efficacy of antibiotics. In the long term, this work indicates that modulation of metabolism could make more susceptible during infections or protect them in the context of the microbiome.
抗生素治疗会改变肠道微生物组中的细菌丰度和代谢,导致菌群失调和机会性感染。()既是肠道中的共生菌,也是其他身体部位的机会致病菌。过去的研究表明,()对β-内酰胺类药物的反应取决于其所处的代谢环境,无论是()还是()。对其他细菌的研究表明,独立于生长速率的呼吸代谢增加会促进其对杀菌抗生素的敏感性。我们提出,()进入一种与多糖利用增加和简单糖利用减少相关的保护状态。在这里,我们应用抗生素药敏试验、转录组分析和遗传操作来描述这种多糖介导的耐受(PM 耐受)表型。我们发现,与多糖相比,各种单糖和二糖都会增加()对几种不同β-内酰胺类药物的敏感性。转录组学分析表明,在多糖上,代谢从三羧酸循环的还原分支转移到氧化分支。因此,中间碳代谢产物的补充对 PM 耐受有不同的影响。转录分析还表明,与葡萄糖相比,给纤维时,电子传递链(ETC)蛋白 NQR 的表达减少,ETC 蛋白 NUO 的表达增加。NQR 的缺失增加了()的敏感性,而 NUO 和第三个 ETC 蛋白 NDH2 的缺失则没有影响。这项工作证实,碳源的利用会调节()对抗生素的敏感性,并且厌氧呼吸代谢和 ETC 发挥着至关重要的作用。
重要性:抗生素是一种不可或缺的药物,彻底改变了现代医学。然而,它们的有效性受到大量耐药和耐受机制的挑战。抗生素的治疗也会破坏肠道微生物组,从而对健康产生不利影响。()在肠道微生物组中很常见,但它们经常与厌氧感染有关。因此,了解抗生素如何影响这些细菌对于实施适当的治疗是必要的。最近的工作研究了代谢在与()关系较远的细菌如()对抗生素敏感性中的作用。使用抗生素药敏试验、转录组学和遗传操作,我们证明与单糖相比,多糖会降低β-内酰胺类药物的敏感性。这一发现强调了代谢适应对抗生素治疗效果的深远影响。从长远来看,这项工作表明,代谢的调节可以使()在感染期间更容易受到影响,或者在微生物组的背景下保护它们。