Suppr超能文献

多糖利用基因座的 SusC/SusD 同源物的遗传变异导致 菌株中不同的果聚糖特异性和功能适应性。

Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Strains.

机构信息

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.

Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne, United Kingdom.

出版信息

mSphere. 2018 May 23;3(3). doi: 10.1128/mSphereDirect.00185-18. eCollection 2018 May-Jun.

Abstract

Genomic differences between gut-resident bacterial strains likely underlie significant interindividual variation in microbiome function. Traditional methods of determining community composition, such as 16S rRNA gene amplicon sequencing, fail to capture this functional diversity. Metagenomic approaches are a significant step forward in identifying strain-level sequence variants; however, given the current paucity of biochemical information, they too are limited to mainly low-resolution and incomplete functional predictions. Using genomic, biochemical, and molecular approaches, we identified differences in the fructan utilization profiles of two closely related strains. 8736 () contains a fructan polysaccharide utilization locus (PUL) with a divergent / homolog gene pair that enables it to utilize inulin, differentiating this strain from other characterized strains. Transfer of the distinct pair of / genes from into the noninulin using type strain resulted in inulin use by the recipient strain, (). The presence of the divergent / gene pair alone enabled the hybrid () strain to outcompete the wild-type strain in mice fed an inulin diet. Further, we discovered that the / homolog gene pair facilitated import of inulin into the periplasm without surface predigestion by an endo-acting enzyme, possibly due to the short average chain length of inulin compared to many other polysaccharides. Our data builds upon recent reports of dietary polysaccharide utilization mechanisms found in members of the genus and demonstrates how the acquisition of two genes can alter the functionality and success of a strain within the gut. Dietary polysaccharides play a dominant role in shaping the composition and functionality of our gut microbiota. Dietary interventions using these icrobiota-ccessible arbohydrates (MACs) serve as a promising tool for manipulating the gut microbial community. However, our current gap in knowledge regarding microbial metabolic pathways that are involved in the degradation of these MACs has made the design of rational interventions difficult. The issue is further complicated by the diversity of pathways observed for the utilization of similar MACs, even in closely related microbial strains. Our current work focuses on divergent fructan utilization pathways in two closely related strains and provides an integrated approach to characterize the molecular basis for strain-level functional differences.

摘要

肠道常驻细菌菌株之间的基因组差异可能是微生物组功能在个体间存在显著差异的基础。传统的确定群落组成的方法,如 16S rRNA 基因扩增子测序,无法捕捉到这种功能多样性。宏基因组方法在识别菌株水平的序列变异方面是一个重大的进步;然而,鉴于目前生化信息的匮乏,它们也仅限于主要进行低分辨率和不完整的功能预测。我们使用基因组、生化和分子方法,确定了两种密切相关的 菌株在果糖利用谱上的差异。 8736() 含有一个果糖聚糖利用基因座 (PUL),其中包含一对 diverged / homolog 基因对,使其能够利用菊粉,使该菌株与其他已鉴定的 菌株区分开来。将不同的 / 基因对从 转移到非菊粉利用的模式菌株 中,导致受体菌株能够利用菊粉,()。仅存在 diverged / 基因对就能使杂种 () 菌株在喂食菊粉饮食的小鼠中与野生型菌株 竞争。此外,我们发现 / homolog 基因对促进了菊粉进入周质的运输,而无需内切酶进行表面预消化,这可能是由于菊粉的平均链长较短,与许多其他多糖相比。我们的数据建立在最近关于 属成员中发现的饮食多糖利用机制的报告基础上,并展示了两个基因的获得如何改变菌株在肠道中的功能和成功。饮食多糖在塑造我们肠道微生物群的组成和功能方面起着主导作用。使用这些微生物可利用的碳水化合物 (MACs) 的饮食干预措施是一种操纵肠道微生物群落的有前途的工具。然而,我们目前在参与这些 MACs 降解的微生物代谢途径方面的知识差距使得合理干预的设计变得困难。即使在密切相关的微生物菌株中,对于类似 MACs 的利用途径的多样性也使问题变得更加复杂。我们目前的工作集中在两种密切相关的 菌株中不同的果糖利用途径,并提供了一种综合的方法来描述菌株水平功能差异的分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d448/5967196/ccddb1f234b2/sph0031825460001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验