Suppr超能文献

基于人工神经网络的一维声子晶体纳米梁中的慢声模式预测与能带结构计算

Slow sound mode prediction and band structure calculation in 1D phononic crystal nanobeams using an artificial neural network.

作者信息

Hsiao Fu-Li, Yang Yen-Tung, Lin Wen-Kai, Tsai Ying-Pin

机构信息

Institute of Photonics, National Changhua University of Education, Changhua.

College of Photonics, National Yang Ming Chiao Tung University, Tainan.

出版信息

Sci Prog. 2024 Jul-Sep;107(3):368504241272461. doi: 10.1177/00368504241272461.

Abstract

Phononic crystals, which are artificial crystals formed by the periodic arrangement of materials with different elastic coefficients in space, can display modulated sound waves propagating within them. Similar to the natural crystals used in semiconductor research with electronic bandgaps, phononic crystals exhibit the characteristics of phononic bandgaps. A gap design can be utilized to create various resonant cavities, confining specific resonance modes within the defects of the structure. In studies on phononic crystals, phononic band structure diagrams are often used to investigate the variations in phononic bandgaps and elastic resonance modes. As the phononic band frequencies vary nonlinearly with the structural parameters, numerous calculations are required to analyze the gap or mode frequency shifts in phononic band structure diagrams. However, traditional calculation methods are time-consuming. Therefore, this study proposes the use of neural networks to replace the time-consuming calculation processes of traditional methods. Numerous band structure diagrams are initially obtained through the finite-element method and serve as the raw dataset, and a certain proportion of the data is randomly extracted from the dataset for neural network training. By treating each mode point in the band structure diagram as an independent data point, the training dataset for neural networks can be expanded from a small number to a large number of band structure diagrams. This study also introduces another network that effectively improves mode prediction accuracy by training neural networks to focus on specific modes. The proposed method effectively reduces the cost of repetitive calculations.

摘要

声子晶体是由具有不同弹性系数的材料在空间中周期性排列形成的人工晶体,能够呈现调制在其中传播的声波。类似于在半导体研究中用于产生电子带隙的天然晶体,声子晶体具有声子带隙的特性。可以利用带隙设计来创建各种谐振腔,将特定的共振模式限制在结构的缺陷内。在声子晶体的研究中,声子能带结构图常被用于研究声子带隙和弹性共振模式的变化。由于声子带频率随结构参数非线性变化,需要进行大量计算来分析声子能带结构图中的带隙或模式频率偏移。然而,传统的计算方法耗时较长。因此,本研究提出使用神经网络来取代传统方法中耗时的计算过程。最初通过有限元方法获得大量的能带结构图作为原始数据集,并从数据集中随机提取一定比例的数据用于神经网络训练。通过将能带结构图中的每个模式点视为一个独立的数据点,神经网络的训练数据集可以从少量能带结构图扩展到大量能带结构图。本研究还引入了另一种网络,通过训练神经网络专注于特定模式,有效提高了模式预测精度。所提出的方法有效降低了重复计算的成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/503f/11307336/9f33618745e9/10.1177_00368504241272461-fig1.jpg

相似文献

4
Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
Materials (Basel). 2022 Nov 23;15(23):8315. doi: 10.3390/ma15238315.
5
Band gap characteristics of new composite multiple locally resonant phononic crystal metamaterial.
J Phys Condens Matter. 2024 Feb 14;36(19). doi: 10.1088/1361-648X/ad266e.
6
Design of Graphene Phononic Crystals for Heat Phonon Engineering.
Micromachines (Basel). 2020 Jun 30;11(7):655. doi: 10.3390/mi11070655.
7
Vibration Isolation and Noise Reduction Method Based on Phononic Crystal.
Comput Intell Neurosci. 2022 Oct 10;2022:9903645. doi: 10.1155/2022/9903645. eCollection 2022.
9
Topological Design of Two-Dimensional Phononic Crystals Based on Genetic Algorithm.
Materials (Basel). 2023 Aug 13;16(16):5606. doi: 10.3390/ma16165606.

本文引用的文献

2
High-performance phononic crystal sensing structure for acetone solution concentration sensing.
Sci Rep. 2023 Apr 29;13(1):7057. doi: 10.1038/s41598-023-34226-4.
3
Acoustic Add-Drop filter involving a ring resonator based on a One-Dimensional surface phononic crystal.
Ultrasonics. 2021 Dec;117:106551. doi: 10.1016/j.ultras.2021.106551. Epub 2021 Aug 11.
4
Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection.
Microsyst Nanoeng. 2021 Jan 18;7:8. doi: 10.1038/s41378-020-00236-9. eCollection 2021.
6
Ultrasonic Gas Sensing by Two-Dimensional Surface Phononic Crystal Ring Resonators.
ACS Sens. 2019 Jul 26;4(7):1761-1765. doi: 10.1021/acssensors.9b00865. Epub 2019 Jun 24.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验