Sohel Amir, Kovilakath Muhammed Safeer Naduvil, Gogoi Palash J, Ansari Hasem, Phukan Plabana, Bag Soumabha, John Neena S, Baksi Ananya
Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Small. 2024 Nov;20(47):e2405160. doi: 10.1002/smll.202405160. Epub 2024 Aug 7.
The formation of NiOOH on the catalyst surface is widely considered to be the active species in electrochemical urea oxidation reactions (UOR). Though in situ-formed NiOOH species are reported to be more active than the synthesized ones, the mechanistic study of the actual active species remains a daunting task due to the possibility of different phases and instability of surface-formed NiOOH. Herein, mechanistic UOR aspects of electrochemically activated metallic NiNb Nanoglass showing stability toward the γ-NiOOH phase are reported, probed via in situ Raman spectroscopy, supported by electron microscopy analysis and X-ray photoelectron spectroscopy in contrast with the β-NiOOH formation favored on Ni foil. Detailed mechanistic study further reveals that γ-NiOOH predominantly follows a direct UOR mechanism while β-NiOOH favors indirect UOR from time-dependent Raman study, and electrochemical impedance spectroscopy (EIS) analysis. The Nanoglass has shown outstanding UOR performance with a low Tafel slope of 16 mV dec and stability for prolonged electrolysis (≈38 mA cm for 70 h) that can be attributed to the nanostructured glassy interfaces facilitating more γ-NiOOH species formation and stabilization on the surface. The present study opens up a new direction for the development of inexpensive Ni-based UOR catalysts and sheds light on the UOR mechanism.
催化剂表面NiOOH的形成被广泛认为是电化学尿素氧化反应(UOR)中的活性物种。尽管据报道原位形成的NiOOH物种比合成的更具活性,但由于表面形成的NiOOH可能存在不同相和不稳定性,对实际活性物种的机理研究仍然是一项艰巨的任务。在此,报道了电化学活化的金属NiNb纳米玻璃对γ-NiOOH相具有稳定性的UOR机理方面的研究,通过原位拉曼光谱进行探测,并辅以电子显微镜分析和X射线光电子能谱,与在镍箔上更易形成的β-NiOOH形成对比。详细的机理研究进一步表明,从时间分辨拉曼研究和电化学阻抗谱(EIS)分析来看,γ-NiOOH主要遵循直接UOR机理,而β-NiOOH则倾向于间接UOR。纳米玻璃表现出出色的UOR性能,塔菲尔斜率低至16 mV dec,并且在长时间电解(70小时内约38 mA cm)中具有稳定性,这可归因于纳米结构的玻璃态界面促进了更多γ-NiOOH物种在表面的形成和稳定。本研究为开发廉价的镍基UOR催化剂开辟了新方向,并阐明了UOR机理。