Suppr超能文献

一种自组装多相薄膜作为氧电极用于提高可逆固体氧化物电池的耐久性

A Self-Assembled Multiphasic Thin Film as an Oxygen Electrode for Enhanced Durability in Reversible Solid Oxide Cells.

作者信息

Buzi Fjorelo, Kreka Kosova, Santiso Jose, Rapenne Laetitia, Sha Zijie, Douglas James O, Chiabrera Francesco, Morata Alex, Burriel Monica, Skinner Stephen, Bernadet Lucile, Baiutti Federico, Tarancón Albert

机构信息

Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona 08930, Spain.

Catalonia Institute for Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Bellaterra 08193, Spain.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43462-43473. doi: 10.1021/acsami.4c06290. Epub 2024 Aug 7.

Abstract

The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells. Electrochemical characterization shows remarkable oxygen reduction reaction (fuel cell mode) and oxygen evolution activity (electrolysis mode) in comparison with state-of-the-art bulk electrodes, combined with outstanding long-term stability at operational temperatures of 700 °C. The disordered nanostructure was implemented as a standalone oxygen electrode on commercial anode-supported cells, resulting in high electrical output in fuel cell and electrolysis mode for active layer thicknesses of only 200 nm (>95% decrease in critical raw materials with respect to conventional cathodes). The cell was operated for over 300 h in fuel cell mode displaying excellent stability. Our findings unlock the hidden potential of advanced thin-film technologies for obtaining high-performance disordered electrodes based on nanocomposite self-assembly combining long durability and minimized use of critical raw materials.

摘要

为了减少关键原材料的使用,将纳米复合材料用作电极层代表了下一代固体氧化物电池的一个潜在转折点。然而,用薄膜替代块状电极材料仍存在争议,特别是由于其在工作条件下的性能和稳定性存在不确定性,这限制了它们在实际应用中的使用。在这项工作中,我们提出了一种多相纳米复合材料,其特征是具有高度无序的微观结构和高阳离子混合,这是由钙钛矿基混合离子 - 电子导体(镧锶钴酸盐)和萤石基纯离子导体(钐掺杂二氧化铈)作为可逆固体氧化物电池的氧电极进行薄膜自组装的结果。电化学表征表明,与现有技术的块状电极相比,该材料具有显著的氧还原反应(燃料电池模式)和析氧活性(电解模式),并在700°C的工作温度下具有出色的长期稳定性。这种无序的纳米结构被用作商业阳极支撑电池上的独立氧电极,对于仅200nm的活性层厚度,在燃料电池和电解模式下都能产生高电输出(相对于传统阴极,关键原材料减少>95%)。该电池在燃料电池模式下运行了超过300小时,显示出优异的稳定性。我们的研究结果揭示了先进薄膜技术在基于纳米复合材料自组装获得高性能无序电极方面的潜在优势,这种电极兼具长耐久性和最小化关键原材料的使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验