Lee Jeongrak, Kim Seonghyeon, Jo Hanseong, Lee Anna
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
Lab Chip. 2024 Sep 24;24(19):4558-4570. doi: 10.1039/d4lc00516c.
In the realm of nano/microsatellite clustering, the demand for microthrusters is steadily growing. Solid propellant microthrusters, recognized for their lightweight build and structural simplicity, carry significant commercial promise. However, existing solid propellant microthrusters manufactured using MEMS technology encounter notable issues such as inconsistent thrust generation positions, limited thrust profiles, and issues related to productivity, scalability, and durability. In this study, we propose a novel shared-chamber solid-propellant microthruster design that consistently produces thrust at a designated position and accommodates multiple thrust modes. The components and fabrication of this thruster were developed using lab-on-printed-circuit-board (PCB) technology and PCB surface mount technology, showcasing enhanced structural stability, scalability, and potential for mass production. Our ignition and combustion experiments confirmed the repeatability of the unit operation, a fundamental feature of this innovative microthruster. Furthermore, we successfully implemented and evaluated the power mode for increased thrust and the continuous mode for prolonged operational duration. Integrating the lab-on-PCB-based shared-chamber solid propellant microthruster with propulsion and electronic control systems holds promising potential for future satellite missions.
在纳米/微卫星集群领域,对微推进器的需求正在稳步增长。固体推进剂微推进器以其轻巧的结构和简单的构造而闻名,具有重大的商业前景。然而,现有的采用微机电系统(MEMS)技术制造的固体推进剂微推进器存在一些显著问题,如推力产生位置不一致、推力曲线有限,以及与生产率、可扩展性和耐久性相关的问题。在本研究中,我们提出了一种新型的共享腔固体推进剂微推进器设计,该设计能够在指定位置持续产生推力,并可适应多种推力模式。这种推进器的组件和制造采用了印刷电路板(PCB)上的实验室技术和PCB表面贴装技术,展现出增强的结构稳定性、可扩展性和大规模生产潜力。我们的点火和燃烧实验证实了该单元操作的可重复性,这是这种创新型微推进器的一个基本特性。此外,我们成功实现并评估了用于增加推力的功率模式和用于延长运行持续时间的连续模式。将基于PCB实验室的共享腔固体推进剂微推进器与推进和电子控制系统集成,对未来的卫星任务具有广阔的潜在应用前景。