Suppr超能文献

沙漠化下不断变化的永久冻土层环境和青藏高原的热量传递机制。

The changing permafrost environment under desertification and the heat transfer mechanism in the Qinghai-Tibetan Plateau.

机构信息

State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong, 510641, China.

School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.

出版信息

J Environ Manage. 2024 Sep;367:122055. doi: 10.1016/j.jenvman.2024.122055. Epub 2024 Aug 6.

Abstract

With the development of desertification in the Qinghai-Tibet Plateau (QTP), aeolian sand becomes the remarkable local factor affecting the thermal state of permafrost along the Qinghai-Tibet Engineering Corridor (QTEC). In this study, a model experiment was conducted to analyze the impact of thickness and water content of aeolian sand on its thermal effect, and a hydro-thermo-vapor coupling model of frozen soil was carried out to reveal the heat transfer mechanism of the aeolian sand layer (ASL) with different thicknesses and its hydrothermal effect on permafrost. The results indicate that: (1) ASL with the thickness larger than 80 cm has the property of converting precipitation into soil water. The thicker the ASL, the more precipitation infiltrates and accumulates in the soil layer. (2) The cooling effect of ASL on permafrost results from the lower net surface radiation, causing the annual average surface heat flux shifting from heat inflow to heat outflow. The warming effect of ASL on permafrost results from the increasing convective heat accompanying the infiltrated precipitation. (3) As the ASL thickens, the thermal effect of ASL on permafrost gradually shifts from the cooling effect dominated by heat radiation and heat conduction to the warming effect dominated by precipitation infiltration and heat convection. The warming effect of thick ASL on permafrost requires a certain amount of years to manifest, and the critical thickness is suggested to be larger than 120 cm.

摘要

随着青藏高原荒漠化的发展,风沙成为影响青藏工程走廊(QTEC)沿线多年冻土热状况的显著局地因素。本研究通过模型实验分析了风沙层厚度和含水量对其热效应的影响,并建立了冻土地下水热汽耦合模型,揭示了不同厚度风沙层的传热机制及其对多年冻土的水热效应。结果表明:(1)厚度大于 80 cm 的风沙层具有将降水转化为土壤水的特性,风沙层越厚,入渗和积累的降水量越多。(2)风沙层对多年冻土的冷却作用源于较低的净表面辐射,导致年平均地表热通量从热量流入转变为热量流出。风沙层对多年冻土的增温作用源于伴随入渗降水的增加的对流热。(3)随着风沙层增厚,风沙层对多年冻土的热效应逐渐由辐射和热传导主导的冷却效应转变为降水入渗和热对流主导的增温效应。厚风沙层对多年冻土的增温作用需要一定年限才能显现,建议其临界厚度大于 120 cm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验