Suppr超能文献

是什么驱使大学生使用人工智能进行第二语言学习?基于扩展的技术接受模型,对自我效能感、焦虑和态度的作用进行建模。

What drives college students to use AI for L2 learning? Modeling the roles of self-efficacy, anxiety, and attitude based on an extended technology acceptance model.

机构信息

School of Information Sciences and Engineering, Hunan Normal University, Changsha, China.

School of Foreign Studies, Hunan Normal University, Changsha, China.

出版信息

Acta Psychol (Amst). 2024 Sep;249:104442. doi: 10.1016/j.actpsy.2024.104442. Epub 2024 Aug 6.

Abstract

Prior research highlights the critical role of AI in enhancing second language (L2) learning. However, the factors that practically affect L2 learners to engage with AI resources are still underexplored. Given the widespread availability of digital devices among college students, they are particularly poised to benefit from AI-assisted L2 learning. As such, this study, grounded in an extended Technology Acceptance Model (TAM), investigates the predictors of college L2 learners' actual use of AI tools, focusing on AI self-efficacy, AI-related anxiety, and their overall attitude toward AI. Data was gathered from 429 L2 learners at Chinese universities via an online questionnaire, utilizing four established scales. Through structural equation modeling (SEM) via AMOS 24, the results indicate that AI self-efficacy could negatively affect AI anxiety, and positively influence both learners' attitude toward AI and their actual use of AI tools. Besides, AI anxiety negatively predicted the actual use of AI. Moreover, AI self-efficacy was a positive predictor of AI use through reducing AI anxiety, enhancing attitude toward AI, or a combination of both. This study also discusses the theoretical and pedagogical implications and suggests directions for future research.

摘要

先前的研究强调了人工智能在增强第二语言(L2)学习方面的关键作用。然而,实际影响 L2 学习者使用人工智能资源的因素仍未得到充分探索。鉴于大学生普遍拥有数字设备,他们特别适合从人工智能辅助的 L2 学习中受益。因此,本研究基于扩展的技术接受模型(TAM),调查了大学 L2 学习者实际使用人工智能工具的预测因素,重点关注人工智能自我效能感、与人工智能相关的焦虑以及他们对人工智能的整体态度。通过在线问卷,从中国大学的 429 名 L2 学习者那里收集了数据,使用了四个成熟的量表。通过 AMOS 24 的结构方程建模(SEM),结果表明人工智能自我效能感可以负向影响人工智能焦虑感,正向影响学习者对人工智能的态度和对人工智能工具的实际使用。此外,人工智能焦虑感也负向预测了人工智能的实际使用。此外,人工智能自我效能感通过降低人工智能焦虑感、增强对人工智能的态度,或者两者兼而有之,成为人工智能使用的积极预测因素。本研究还讨论了理论和教学意义,并为未来的研究提出了方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验