Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan.
Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan.
Bioresour Technol. 2024 Sep;408:131219. doi: 10.1016/j.biortech.2024.131219. Epub 2024 Aug 5.
Microalgal-bacterial consortia (MBC) and microalgal consortia (MC) were cultivated with primary and final treated wastewaters, respectively, using a fluidised carrier. This study determines the main factors and operations required for flocculating suspended MBC (SMBC) and MC (SMC) in cultures. The flocculated SMBC and SMC with good settleability require the detachment of thickened MBC or MC on the carrier and suppressed SMBC and SMC formation by the original MBC and MC grown in the culture. Flocculation was achieved by controlling the carrier and culture replacements. A carrier replacement ratio of 0.04 d and a culture replacement ratio of 0.95 d minimised the dissolved organic carbon (15.3 mg-C/L) and SMBC residue (7.3 mg/L). Thus, treating primary treated wastewater with MBC formed using fluidised carriers is a promising strategy, enabling the use of whole cells in MBC for renewable energy production.
采用流化载体分别以原水和深度处理后的污水培养微藻-细菌混合生物膜(MBC)和微藻生物膜(MC)。本研究确定了在培养物中絮凝悬浮 MBC(SMBC)和 MC(SMC)所需的主要因素和操作。具有良好沉降性能的絮凝 SMBC 和 SMC 需要从载体上分离出增厚的 MBC 或 MC,并抑制由培养物中生长的原始 MBC 和 MC 形成的 SMBC 和 SMC。通过控制载体和培养液的替换来实现絮凝。载体更换率为 0.04 d,培养液更换率为 0.95 d 时,可将溶解有机碳(15.3 mg-C/L)和 SMBC 残留量(7.3 mg/L)降至最低。因此,使用流化载体形成 MBC 处理原水是一种很有前途的策略,可利用 MBC 中的完整细胞进行可再生能源生产。