Suppr超能文献

考虑数据共享,以最大化利用病原体生物学和基因组资源数据,为公共卫生服务。

Data sharing considerations to maximize the use of pathogen biological and genomics resources data for public health.

机构信息

Scotland's Rural College, Department of Rural Land Use, Craibstone Campus, Aberdeen AB21 9YA, United Kingdom.

出版信息

J Appl Microbiol. 2024 Sep 2;135(9). doi: 10.1093/jambio/lxae204.

Abstract

Public sector data associated with health are a highly valuable resource with multiple potential end-users, from health practitioners, researchers, public bodies, policy makers, and industry. Data for infectious disease agents are used for epidemiological investigations, disease tracking and assessing emerging biological threats. Yet, there are challenges in collating and re-using it. Data may be derived from multiple sources, generated and collected for different purposes. While public sector data should be open access, providers from public health settings or from agriculture, food, or environment sources have sensitivity criteria to meet with ethical restrictions in how the data can be reused. Yet, sharable datasets need to describe the pathogens with sufficient contextual metadata for maximal utility, e.g. associated disease or disease potential and the pathogen source. As data comprise the physical resources of pathogen collections and potentially associated sequences, there is an added emerging technical issue of integration of omics 'big data'. Thus, there is a need to identify suitable means to integrate and safely access diverse data for pathogens. Established genomics alliances and platforms interpret and meet the challenges in different ways depending on their own context. Nonetheless, their templates and frameworks provide a solution for adaption to pathogen datasets.

摘要

公共卫生相关数据是一种极具价值的资源,拥有众多潜在的最终用户,包括卫生从业者、研究人员、公共机构、政策制定者和行业。传染病病原体的数据可用于流行病学调查、疾病跟踪和评估新出现的生物威胁。然而,在收集和再利用这些数据方面存在挑战。这些数据可能来自多个来源,并且是为不同目的而生成和收集的。尽管公共部门的数据应该是开放获取的,但公共卫生机构或农业、食品或环境来源的提供者都有敏感性标准,需要遵守伦理限制,规定数据可以如何重复使用。然而,可共享的数据集需要用足够的上下文元数据来描述病原体,以实现最大的效用,例如相关疾病或疾病潜力以及病原体来源。由于数据包含病原体收集和潜在相关序列的物理资源,因此还存在一个新兴的技术问题,即需要整合组学“大数据”。因此,需要确定合适的方法来整合和安全地访问各种病原体数据。已建立的基因组联盟和平台根据自身情况以不同的方式解释和应对这些挑战。尽管如此,它们的模板和框架为适应病原体数据集提供了一种解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验