Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium.
KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium.
New Phytol. 2024 Oct;244(1):159-175. doi: 10.1111/nph.20032. Epub 2024 Aug 7.
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes. The charge- and proton-balanced FBA model identified the mitochondrial phosphate carrier (PiC, Pi/H symport), which provides Pi to the matrix to sustain ATP biosynthesis, as a major consumer of cytosolic protons during daytime (> 50%). The delivery of Pi to the mitochondrion, co-transported with protons, is required for oxidative phosphorylation and allows sufficient ATP to be synthesized to meet the high energy demand during CAM Phase III. Additionally, the model predicts that mitochondrial pyruvate originating from decarboxylation of malate is exclusively exported to the cytosol, probably via a pyruvate channel mechanism, to fuel gluconeogenesis. In this biochemical cycle, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) acts as another important cytosolic proton consumer. Overall, our findings emphasize the importance of mitochondria in CAM and uncover a hitherto unappreciated role in metabolic proton homeostasis.
景天酸代谢(CAM)叶片的特征是夜间酸化和白天去酸化过程,分别与磷酸烯醇丙酮酸羧化酶和 Rubisco 的定时作用有关。CAM 叶片如何管理细胞溶质质子动态平衡,特别是在面临来自液泡的大量日间质子外流时,仍然不清楚。为了预测细胞内质子通量的昼夜动力学,构建了一个成熟的苹果酸酶型 CAM 叶肉细胞的 12 相通量平衡分析(FBA)模型。电荷和质子平衡的 FBA 模型确定了线粒体磷酸盐载体(PiC,Pi/H 共转运体)是白天(>50%)细胞溶质质子的主要消耗者。Pi 与质子一起被运送到线粒体,这对于氧化磷酸化是必需的,并且允许足够的 ATP 被合成,以满足 CAM 阶段 III 期间的高能量需求。此外,该模型预测,来自苹果酸脱羧的线粒体丙酮酸仅被输出到细胞质,可能通过丙酮酸通道机制,为糖异生提供燃料。在这个生化循环中,甘油醛 3-磷酸脱氢酶(GAPDH)作为另一个重要的细胞溶质质子消耗者发挥作用。总的来说,我们的发现强调了线粒体在 CAM 中的重要性,并揭示了其在代谢质子动态平衡中的一个以前未被认识的作用。