Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, Geel, 2440, Belgium.
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK.
New Phytol. 2021 Mar;229(6):3116-3124. doi: 10.1111/nph.17070. Epub 2020 Dec 30.
Opening of stomata in plants with crassulacean acid metabolism (CAM) is mainly shifted to the night period when atmospheric CO is fixed by phosphoenolpyruvate carboxylase and stored as malic acid in the vacuole. As such, CAM plants ameliorate transpirational water losses and display substantially higher water-use efficiency compared with C and C plants. In the past decade significant technical advances have allowed an unprecedented exploration of genomes, transcriptomes, proteomes and metabolomes of CAM plants and efforts are ongoing to engineer the CAM pathway in C plants. Whilst research efforts have traditionally focused on nocturnal carboxylation, less information is known regarding the drivers behind diurnal malate remobilisation from the vacuole that liberates CO to be fixed by RuBisCo behind closed stomata. To shed more light on this process, we provide a stoichiometric analysis to identify potentially rate-limiting steps underpinning diurnal malate mobilisation and help direct future research efforts. Within this remit we address three key questions: Q1 Does light-dependent assimilation of CO via RuBisCo dictate the rate of malate mobilisation? Q2: Do the enzymes responsible for malate decarboxylation limit daytime mobilisation from the vacuole? Q3: Does malate efflux from the vacuole set the pace of decarboxylation?
景天酸代谢(CAM)植物的气孔开放主要转移到夜间,此时磷酸烯醇丙酮酸羧化酶将大气中的 CO 固定,并以苹果酸的形式储存在液泡中。因此,CAM 植物减轻了蒸腾水分的损失,并显示出比 C3 和 C4 植物更高的水分利用效率。在过去的十年中,重大的技术进步使对 CAM 植物的基因组、转录组、蛋白质组和代谢组进行前所未有的探索成为可能,并正在努力在 C4 植物中构建 CAM 途径。虽然研究工作传统上侧重于夜间羧化作用,但对于白天从液泡中释放 CO 的苹果酸再移动的驱动因素知之甚少,CO 被 RuBisCo 固定在关闭的气孔后面。为了更深入地了解这一过程,我们提供了一种化学计量分析,以确定支持白天苹果酸动员的潜在限速步骤,并有助于指导未来的研究工作。在这一范围内,我们解决了三个关键问题:Q1:RuBisCo 通过光依赖性同化 CO 是否决定了苹果酸动员的速度?Q2:负责苹果酸脱羧的酶是否限制了白天从液泡中的动员?Q3:苹果酸从液泡中流出是否决定了脱羧的速度?