Department of Orthopaedic Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China.
J Coll Physicians Surg Pak. 2024 Aug;34(8):916-921. doi: 10.29271/jcpsp.2024.08.916.
To locate the candidate therapeutic target genes involved in ferroptosis in steroid-induced osteonecrosis of the femoral head (SONFH).
Bioinformatics analysis study. Place and Duration of the Study: Department of Orthopaedic Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China, from March to July 2023.
After processing the gene expression omnibus (GEO) data with the R programming language, differentially expressed ferroptosis-related genes in SONFH were identified. To pinpoint the genes most strongly linked to SONFH in association with ferroptosis, least absolute shrinkage and selection operator (LASSO) regression and support vector machine-recursive feature elimination (SVM-RFE) were employed. Subsequently, the screened essential genes were analysed to investigate immune cell infiltration, and competing endogenous RNA (ceRNA) networks involving these marker genes were constructed.
The machine learning algorithms identified three genes i.e., SOCS1 (suppressor of cytokine signalling1), MYCN (N-myc proto-oncogene protein), and KLF2 (Kruppel-like factor 2) as diagnostic feature biomarkers associated with ferroptosis. Additionally, CIBERSORT analysis revealed that alterations in the immune microenvironment, such as Macrophages M1, Monocytes, and T cells CD4 naive, could be linked to SOCS1, MYCN, and KLF2. Moreover, the competing endogenous RNA (ceRNA) network exposed a complex regulatory relationship based on marker genes.
SOCS1, MYCN, and KLF2 are potential biomarkers associated with ferroptosis in SONFH, pending confirmation in future studies.
Steroid-induced osteonecrosis of the femoral head, Ferroptosis, Machine learning, Genetic analysis.
定位与激素性股骨头坏死(SONFH)中铁死亡相关的候选治疗靶基因。
生物信息学分析研究。
中国广东珠海市中西医结合医院骨科,2023 年 3 月至 7 月。
使用 R 编程语言处理基因表达综合数据库(GEO)数据,鉴定 SONFH 中差异表达的与铁死亡相关的基因。为了确定与铁死亡关联的与 SONFH 最强相关的基因,采用最小绝对收缩和选择算子(LASSO)回归和支持向量机递归特征消除(SVM-RFE)。随后,对筛选出的关键基因进行分析,以研究免疫细胞浸润,并构建涉及这些标记基因的竞争内源性 RNA(ceRNA)网络。
机器学习算法鉴定出三个基因,即 SOCS1(细胞因子信号转导抑制因子 1)、MYCN(N- myc 原癌基因蛋白)和 KLF2( Kruppel 样因子 2),作为与铁死亡相关的诊断特征生物标志物。此外,CIBERSORT 分析显示,免疫微环境的改变,如巨噬细胞 M1、单核细胞和 T 细胞 CD4 幼稚细胞,可能与 SOCS1、MYCN 和 KLF2 有关。此外,基于标记基因的竞争内源性 RNA(ceRNA)网络揭示了一种复杂的调节关系。
SOCS1、MYCN 和 KLF2 是 SONFH 中与铁死亡相关的潜在生物标志物,有待进一步研究证实。
激素性股骨头坏死、铁死亡、机器学习、基因分析。