Nanfang College Guangzhou, Guangzhou, 510970, China.
Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
BMC Musculoskelet Disord. 2024 Jul 29;25(1):596. doi: 10.1186/s12891-024-07707-4.
Steroid-induced osteonecrosis of femoral head (SONFH) is a severe health risk, and this study aims to identify immune-related biomarkers and pathways associated with the disease through bioinformatics analysis and animal experiments.
Using SONFH-related datasets obtained from the GEO database, we performed differential expression analysis and weighted gene co-expression network analysis (WGCNA) to extract SONFH-related genes. A protein-protein interaction (PPI) network was then constructed, and core sub-network genes were identified. Immune cell infiltration and clustering analysis of SONFH samples were performed to assess differences in immune cell populations. WGCNA analysis was used to identify module genes associated with immune cells, and hub genes were identified using machine learning. Internal and external validation along with animal experiments were conducted to confirm the differential expression of hub genes and infiltration of immune cells in SONFH.
Differential expression analysis revealed 502 DEGs. WGCNA analysis identified a blue module closely related to SONFH, containing 1928 module genes. Intersection analysis between DEGs and blue module genes resulted in 453 intersecting genes. The PPI network and MCODE module identified 15 key targets enriched in various signaling pathways. Analysis of immune cell infiltration showed statistically significant differences in CD8 + t cells, monocytes, macrophages M2 and neutrophils between SONFH and control samples. Unsupervised clustering classified SONFH samples into two clusters (C1 and C2), which also exhibited significant differences in immune cell infiltration. The hub genes (ICAM1, NR3C1, and IKBKB) were further identified using WGCNA and machine learning analysis. Based on these hub genes, a clinical prediction model was constructed and validated internally and externally. Animal experiments confirmed the upregulation of hub genes in SONFH, with an associated increase in immune cell infiltration.
This study identified ICAM1, NR3C1, and IKBKB as potential immune-related biomarkers involved in immune cell infiltration of CD8 + t cells, monocytes, macrophages M2, neutrophils and other immune cells in the pathogenesis of SONFH. These biomarkers act through modulation of the chemokine signaling pathway, Toll-like receptor signaling pathway, and other pathways. These findings provide valuable insights into the disease mechanism of SONFH and may aid in future drug development efforts.
激素诱导的股骨头坏死(SONFH)是一种严重的健康风险,本研究旨在通过生物信息学分析和动物实验,鉴定与该疾病相关的免疫相关生物标志物和途径。
使用从 GEO 数据库获得的 SONFH 相关数据集,我们进行了差异表达分析和加权基因共表达网络分析(WGCNA),以提取 SONFH 相关基因。然后构建了蛋白质-蛋白质相互作用(PPI)网络,并鉴定了核心子网络基因。对 SONFH 样本进行免疫细胞浸润和聚类分析,以评估免疫细胞群体的差异。使用 WGCNA 分析鉴定与免疫细胞相关的模块基因,并使用机器学习鉴定枢纽基因。通过内部和外部验证以及动物实验来确认枢纽基因的差异表达和 SONFH 中免疫细胞的浸润。
差异表达分析显示有 502 个 DEG。WGCNA 分析鉴定了一个与 SONFH 密切相关的蓝色模块,包含 1928 个模块基因。DEG 和蓝色模块基因的交集分析产生了 453 个交集基因。PPI 网络和 MCODE 模块鉴定了 15 个富含各种信号通路的关键靶标。免疫细胞浸润分析显示,SONFH 和对照样本之间 CD8+T 细胞、单核细胞、M2 巨噬细胞和中性粒细胞存在统计学显著差异。无监督聚类将 SONFH 样本分为两个聚类(C1 和 C2),这两个聚类在免疫细胞浸润方面也存在显著差异。使用 WGCNA 和机器学习分析进一步鉴定了枢纽基因(ICAM1、NR3C1 和 IKBKB)。基于这些枢纽基因,构建并内部和外部验证了临床预测模型。动物实验证实了 SONFH 中枢纽基因的上调,同时免疫细胞浸润增加。
本研究鉴定了 ICAM1、NR3C1 和 IKBKB 作为潜在的免疫相关生物标志物,它们涉及 SONFH 发病机制中 CD8+T 细胞、单核细胞、M2 巨噬细胞、中性粒细胞和其他免疫细胞的免疫细胞浸润。这些生物标志物通过调节趋化因子信号通路、Toll 样受体信号通路和其他途径发挥作用。这些发现为 SONFH 的疾病机制提供了有价值的见解,并可能有助于未来的药物开发工作。