Suppr超能文献

揭示三苯基膦盐在调节有机室温磷光方面的潜力。

Unveiling the potential of triphenylphosphine salts in tuning organic room temperature phosphorescence.

作者信息

Zhang Yuxia, Wu Xiaomei, Liu Shujuan, Ma Yun, Zhao Qiang

机构信息

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.

出版信息

Chem Commun (Camb). 2024 Aug 27;60(70):9328-9339. doi: 10.1039/d4cc03156c.

Abstract

Triphenylphosphine (TPP) salt derivatives, with their rich chemistry of core-substitution, have emerged as promising candidates for ultralong room temperature phosphorescence (RTP) materials owing to their distinct molecular structures, high quantum efficiency and exceptional phosphorescence properties. This feature article highlights the vast potential of TPP salt derivatives in tunable RTP properties by exploring some factors such as the alkyl chains, halogen anions, through-space charge transfer states, , and recent advancements in multi-level information encryption, high-level anticounterfeiting tags and X-ray imaging applications. We anticipate that this article will assist in directing future analyses based on the mechanisms underlying the RTP behavior of TPP derivatives and offer guidance for the rational design of high-performance RTP materials.

摘要

三苯基膦(TPP)盐衍生物具有丰富的核心取代化学性质,由于其独特的分子结构、高量子效率和优异的磷光性能,已成为超长室温磷光(RTP)材料的有前途的候选者。这篇专题文章通过探索烷基链、卤素阴离子、空间电荷转移态等因素,突出了TPP盐衍生物在可调谐RTP特性方面的巨大潜力,以及在多级信息加密、高级防伪标签和X射线成像应用方面的最新进展。我们预计本文将有助于指导基于TPP衍生物RTP行为背后机制的未来分析,并为高性能RTP材料的合理设计提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验