Suppr超能文献

纹理和影像组学分析参数在预测乳腺癌患者肿瘤组织病理学参数中的作用。

Role of textural and radiomic analysis parameters in predicting histopathological parameters of the tumor in breast cancer patients.

作者信息

Kote Rutuja, Ravina Mudalsha, Goyal Harish, Mohanty Debajyoti, Gupta Rakesh, Shukla Arvind Kumar, Reddy Moulish, Prasanth Pratheek N

机构信息

Department of Nuclear Medicine, .

Department of General Surgery, .

出版信息

Nucl Med Commun. 2024 Oct 1;45(10):835-847. doi: 10.1097/MNM.0000000000001885. Epub 2024 Aug 8.

Abstract

INTRODUCTION

Texture and radiomic analysis characterizes the tumor's phenotype and evaluates its microenvironment in quantitative terms. This study aims to investigate the role of textural and radiomic analysis parameters in predicting histopathological factors in breast cancer patients.

MATERIALS AND METHODS

Two hundred and twelve primary breast cancer patients underwent 18 F-FDG PET/computed tomography for staging. The images were processed in a commercially available textural analysis software. ROI was drawn over the primary tumor with a 40% threshold and was processed further to derive textural and radiomic parameters. These parameters were then compared with histopathological factors of tumor. Receiver-operating characteristic analysis was performed with a P -value <0.05 for statistical significance. The significant parameters were subsequently utilized in various machine learning models to assess their predictive accuracy.

RESULTS

A retrospective study of 212 primary breast cancer patients was done. Among all the significant parameters, SUVmin, SUVmean, SUVstd, SUVmax, discretized HISTO_Entropy, and gray level co-occurrence matrix_Contrast were found to be significantly associated with ductal carcinoma type. Four parameters (SUVmin, SUVmean, SUVstd, and SUVmax) were significant in differentiating the luminal subtypes of the tumor. Five parameters (SUVmin, SUVmean, SUVstd, SUVmax, and SUV kurtosis) were significant in predicting the grade of the tumor. These parameters showcased robust capabilities in predicting multiple histopathological parameters when tested using machine learning algorithms.

CONCLUSION

Though textural analysis could not predict hormonal receptor status, lymphovascular invasion status, perineural invasion status, microcalcification status of tumor, and all the molecular subtypes of the tumor, it could predict the tumor's histologic type, triple-negative subtype, and score of the tumor noninvasively.

摘要

引言

纹理和放射组学分析可对肿瘤表型进行特征描述,并从定量角度评估其微环境。本研究旨在探讨纹理和放射组学分析参数在预测乳腺癌患者组织病理学因素中的作用。

材料与方法

212例原发性乳腺癌患者接受了18F-FDG PET/计算机断层扫描以进行分期。图像在商用纹理分析软件中进行处理。在原发性肿瘤上以40%的阈值绘制感兴趣区(ROI),并进一步处理以得出纹理和放射组学参数。然后将这些参数与肿瘤的组织病理学因素进行比较。进行受试者操作特征分析,P值<0.05具有统计学意义。随后将显著参数用于各种机器学习模型,以评估其预测准确性。

结果

对212例原发性乳腺癌患者进行了回顾性研究。在所有显著参数中,发现SUVmin、SUVmean、SUVstd、SUVmax、离散化的HISTO_熵和灰度共生矩阵_对比度与导管癌类型显著相关。四个参数(SUVmin、SUVmean、SUVstd和SUVmax)在区分肿瘤的腔面亚型方面具有显著性。五个参数(SUVmin、SUVmean、SUVstd、SUVmax和SUV峰度)在预测肿瘤分级方面具有显著性。当使用机器学习算法进行测试时,这些参数在预测多个组织病理学参数方面展现出强大的能力。

结论

尽管纹理分析无法预测肿瘤的激素受体状态、淋巴管浸润状态、神经周围浸润状态、微钙化状态以及肿瘤的所有分子亚型,但它可以无创地预测肿瘤的组织学类型、三阴性亚型和肿瘤分级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验