Liu Kairui, Epsztein Razi, Lin Shihong, Qu Jiuhui, Sun Meng
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
ACS Nano. 2024 Aug 20;18(33):21633-21650. doi: 10.1021/acsnano.4c00540. Epub 2024 Aug 8.
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
具有受限纳米结构的合成膜已成为一类重要的领先材料,能够从复杂的水基质中选择性分离目标离子。这些膜的进一步发展迫切依赖于阐明跨膜离子渗透行为与离子选择性纳米结构之间内在联系的能力。在本综述中,我们首先提取当前合成膜中具有多种空间限制的先进纳米结构。接下来,分析在空间纳米限制下控制离子渗透的潜在机制。然后,我们着手评估离子选择性膜材料,重点关注其结构优点,这些优点使其对多种单价和二价离子具有超高选择性。我们还强调了测量离子渗透率、水合数和传输能垒的实验方法的最新进展。最后,我们提出了高性能离子选择性膜领域未来的研究前景和挑战。