Nossa González Diana L, Gómez Castaño Jovanny A, Echeverria Gustavo A, Piro Oscar E, Saeed Aamer, Erben Mauricio F
CEQUINOR (UNLP-CONICET, CCT-La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 e/ 60 y 64 N° 1465 La Plata, B1900, Buenos Aires, Argentina.
Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja, Avenida Central del Norte, Boyacá, 050030, Colombia.
Chemphyschem. 2024 Dec 2;25(23):e202300680. doi: 10.1002/cphc.202300680. Epub 2024 Oct 10.
The 1-acyl thiourea family [RC(O)NHC(S)NRR] exhibits the flexibility to incorporate a wide variety of substituents into their structure. The structural attributes of these compounds are intricately tied to the type and extent of substitution. In the case of 3-mono-substituted thioureas (R=H), the conformational behavior is predominantly shaped by the presence of an intramolecular N-H ⋅ ⋅ ⋅ O=C hydrogen bond. This study delves into the structural consequences stemming from the inclusion of substituents possessing hydrogen-donor capabilities within four novel 1-acyl-3-mono-substituted thiourea derivatives. A comprehensive suite of analytical techniques, encompassing FTIR, Raman spectroscopy, multinuclear (H and C) NMR spectroscopy, single-crystal X-ray diffraction, and supported by computational methods, notably NBO (Natural Bond Orbital) population analysis, Hirshfeld analysis, and QTAIM (Quantum Theory of Atoms in Molecules), was harnessed to scrutinize and characterize these compounds. In the crystalline state, these compounds exhibit an intricate interplay of intermolecular interactions, prominently featuring an expansive network of hydrogen bonds between the hydroxy (-OH) groups and the carbonyl and thiocarbonyl bonds within the 1-acyl thiourea fragment. Notably, the topological analysis underscores significant distinctions in the properties of the acyl thiourea fragment and the intramolecular >C=O ⋅ ⋅ ⋅ H-N bond when transitioning from the isolated molecule to the crystalline environment.
1-酰基硫脲家族[RC(O)NHC(S)NRR]具有在其结构中引入多种取代基的灵活性。这些化合物的结构属性与取代的类型和程度密切相关。对于3-单取代硫脲(R = H),构象行为主要由分子内N-H⋅⋅⋅O = C氢键的存在决定。本研究深入探讨了四种新型1-酰基-3-单取代硫脲衍生物中具有氢供体能力的取代基的引入所产生的结构后果。利用一套综合的分析技术,包括傅里叶变换红外红外光谱(FTIR)、拉曼光谱、多核(氢和碳)核磁共振光谱、单晶X射线衍射,并辅以计算方法,特别是自然键轨道(NBO)布居分析、 Hirshfeld分析和分子中的原子量子理论(QTAIM),来研究和表征这些化合物。在结晶状态下,这些化合物表现出分子间相互作用的复杂相互作用,其显著特征是羟基(-OH)基团与1-酰基硫脲片段内的羰基和硫羰基键之间形成广泛的氢键网络。值得注意的是,拓扑分析强调了从孤立分子转变到结晶环境时,酰基硫脲片段和分子内>C = O⋅⋅⋅H-N键的性质存在显著差异。