Zadehnazari Amin, Khosropour Ahmadreza, Zarei Amin, Khazdooz Leila, Amirjalayer Saeed, Auras Florian, Abbaspourrad Alireza
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA.
Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany.
Small. 2024 Nov;20(46):e2405176. doi: 10.1002/smll.202405176. Epub 2024 Aug 8.
The escalating presence of per- and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM-COF and MEL-COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL- and MELEM-COFs achieved 90.0-99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM-COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g adsorption capacity-surpassing all reported COFs to date. MELEM-COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF-based adsorption strategies.
饮用水中全氟和多氟烷基物质(PFAS)的含量不断上升,引发了紧迫的公共卫生问题,因此需要进行有效去除。本研究提出了一种开创性方法,利用紫精合成共价有机框架纳米球:MELEM-COF和MEL-COF。这些纳米球具有高度结晶的特征,对多种阴离子PFAS化合物表现出非凡的亲和力,能够在30分钟内同时去除多种污染物。在对六种阴离子PFAS化合物进行研究时,MEL-COF和MELEM-COF的去除效率达到了90.0-99.0%。综合分析揭示了COF形态和功能特性对PFAS吸附的协同作用。值得注意的是,具有阳离子表面的MELEM-COF利用静电和偶极相互作用,吸附容量为2500 mg g,超过了迄今为止所有报道的COF。MELEM-COF表现出快速的交换动力学,在30分钟内达到平衡。这些发现加深了对COF材料的理解,并为优化基于COF的吸附策略提供了途径。