Suppr超能文献

基于 DNA walker 调控磁性电化学发光纳米粒子表面 DNA 密度的高灵敏度均相检测 miRNA-155。

High-Sensitivity Homogeneous Detection of miRNA-155 Governed by DNA Walker-Regulated Surface DNA Density of Magnetic Electrochemiluminescence Nanoparticles.

机构信息

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.

Department of Anesthesiology, National Regional Medical Center, Binhai Hospital, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China.

出版信息

Anal Chem. 2024 Aug 20;96(33):13710-13718. doi: 10.1021/acs.analchem.4c02848. Epub 2024 Aug 8.

Abstract

Homogeneous electrochemiluminescence (ECL) has gained attention for its simplicity and stability. However, false positives due to solution background interference pose a challenge. To address this, magnetic ECL nanoparticles (FeO@Ru@SiO NPs) were synthesized, offering easy modification, magnetic separation, and stable luminescence. These were utilized in an ECL sensor for miRNA-155 (miR-155) detection, with locked DNAzyme and substrate chain (mDNA) modified on their surface. The poor conductivity of long-chain DNA significantly impacts the conductivity and electron transfer capability of FeO@Ru@SiO NPs, resulting in weaker ECL signals. Upon target presence, unlocked DNAzyme catalyzes mDNA cleavage, leading to shortened DNA chains and reduced density. In contrast, the presence of short-chain DNA has minimal impact on the conductivity and electron transfer capability of FeO@Ru@SiO NPs. Simultaneously, the material surface's electronegativity decreases, weakening the electrostatic repulsion with the negatively charged electrode, resulting in the system detecting stronger ECL signals. This sensor enables homogeneous ECL detection while mitigating solution background interference through magnetic separation. Within a range of 100 fM to 10 nM, the sensor exhibits a linear relationship between ECL intensity and target concentration, with a 26.91 fM detection limit. It demonstrates high accuracy in clinical sample detection, holding significant potential for clinical diagnostics. Future integration with innovative detection strategies may further enhance sensitivity and specificity in biosensing applications.

摘要

均相电化学发光 (ECL) 因其简单性和稳定性而受到关注。然而,由于溶液背景干扰而产生的假阳性是一个挑战。为了解决这个问题,合成了磁性 ECL 纳米粒子 (FeO@Ru@SiO NPs),具有易于修饰、磁性分离和稳定发光的特点。这些纳米粒子被用于 miRNA-155 (miR-155) 的 ECL 传感器检测中,其表面修饰有锁定的 DNA 酶和底物链 (mDNA)。长链 DNA 的导电性差,极大地影响了 FeO@Ru@SiO NPs 的导电性和电子转移能力,导致 ECL 信号较弱。在存在靶标时,解锁的 DNA 酶催化 mDNA 切割,导致 DNA 链缩短和密度降低。相比之下,短链 DNA 的存在对 FeO@Ru@SiO NPs 的导电性和电子转移能力的影响较小。同时,材料表面的电负性降低,减弱了与带负电荷电极的静电排斥,从而使系统检测到更强的 ECL 信号。该传感器通过磁性分离实现均相 ECL 检测,同时减轻溶液背景干扰。在 100 fM 至 10 nM 的范围内,传感器的 ECL 强度与目标浓度呈线性关系,检测限为 26.91 fM。它在临床样本检测中表现出较高的准确性,在临床诊断中具有重要的应用潜力。未来与创新检测策略的结合可能会进一步提高生物传感应用中的灵敏度和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验