Suppr超能文献

基于深度信念网络频谱感知技术的认知无线电网络鸡群优化建模

Chicken swarm optimization modelling for cognitive radio networks using deep belief network-enabled spectrum sensing technique.

作者信息

M Saraswathi, E Logashanmugam

机构信息

Department of Electronics and Communication Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.

出版信息

PLoS One. 2024 Aug 8;19(8):e0305987. doi: 10.1371/journal.pone.0305987. eCollection 2024.

Abstract

Cognitive radio networks (CRN) enable wireless devices to sense the radio spectrum, determine the frequency state channels, and reconfigure the communication variables to satisfy Quality of Service (QoS) needs by reducing energy utilization. In CRN, spectrum sensing is an essential process that is highly challenging and can be addressed by several traditional techniques, such as energy detection, match filtering, etc. For now, the current models' performance is impacted by the comparatively low Signal to Noise Ratio (SNR) of recognized signals and the insignificant quantity of traditional signal samples. This research proposals a new spectral sensing technique for cognitive radio networks (SST-CRN) that addresses the drawbacks of predictable energy detection models. With the use of a deep belief network (DBN), the suggested model contributes to accomplish a nonlinear threshold based on the chicken swarm algorithm (CSA). The proposed DBN enabled SST-CRN technique goes through two phases in a organized process: offline and online. Throughout the offline phase, the DBN model is methodically trained on pre-gathered data, developing the aptitude to identify problematic patterns and examples from the spectral features of the radio environment. This stage involves extensive feature extraction, validation, and model development to ensure that the DBN can professionally represent complicated spectral dynamics. Additionally, online spectrum sensing is conducted during the real communication phase to enable real-time adaptation to dynamic changes in the spectrum environment. Offline spectrum sensing is typically performed during a devoted sensing period before actual communication begins. When combined with DBN's deep learning capabilities and CSO's innate nature-inspired algorithms, a synergistic framework is created that enables CRNs to explore and allocate incidences on their own with astonishing accuracy. The proposed solution considerably improves the spectrum efficiency and resilience of CRNs by harnessing the power of DBN, which leads to more effective resource utilization and less interference. The Simulation results show that our proposed strategy produces more accurate spectrum occupancy assessments. The result parameters such as probability of detection, SNR of -24dB, the SST-CRN perfect has increased a developed Pd of 0.810, whereas the existing methods RMLSSCRN-100 and RMLSSCRN-300 have accomplished a lower Pd of 0.577 and 0.736, respectively. Our deep learning methodology uses convolutional neural networks to automatically learn and adapt to dynamic and complicated radio environments, improving accuracy and flexibility over classic spectrum sensing approaches. Future research might focus on improving CSO algorithms to better optimize the spectrum sensing process, enhancing the reliability of DBN-enabled sensing techniques.

摘要

认知无线电网络(CRN)使无线设备能够感知无线电频谱,确定频率状态信道,并通过降低能源利用率来重新配置通信变量,以满足服务质量(QoS)需求。在CRN中,频谱感知是一个至关重要的过程,极具挑战性,并且可以通过几种传统技术来解决,例如能量检测、匹配滤波等。目前,当前模型的性能受到已识别信号相对较低的信噪比(SNR)以及传统信号样本数量不足的影响。本研究提出了一种用于认知无线电网络的新频谱感知技术(SST-CRN),该技术解决了传统能量检测模型的缺点。通过使用深度信念网络(DBN),所提出的模型有助于基于鸡群算法(CSA)实现非线性阈值。所提出的基于DBN的SST-CRN技术在一个有组织的过程中经历两个阶段:离线和在线。在离线阶段,DBN模型在预先收集的数据上进行系统训练,培养从无线电环境的频谱特征中识别问题模式和示例的能力。这个阶段涉及广泛的特征提取、验证和模型开发,以确保DBN能够专业地表示复杂的频谱动态。此外,在实际通信阶段进行在线频谱感知,以实现对频谱环境动态变化的实时适应。离线频谱感知通常在实际通信开始前的专用感知期内执行。当与DBN的深度学习能力和CSO的自然启发算法相结合时,创建了一个协同框架,使CRN能够以惊人的准确性自行探索和分配频率。所提出的解决方案通过利用DBN的强大功能,显著提高了CRN的频谱效率和弹性,从而实现更有效的资源利用和更少的干扰。仿真结果表明,我们提出的策略产生了更准确的频谱占用评估。结果参数如检测概率、-24dB的信噪比,SST-CRN完美实现了0.810的改进检测概率(Pd),而现有方法RMLSSCRN-100和RMLSSCRN-300分别实现了较低的Pd,为0.577和0.736。我们的深度学习方法使用卷积神经网络自动学习并适应动态和复杂的无线电环境,比传统频谱感知方法提高了准确性和灵活性。未来的研究可能集中在改进CSO算法以更好地优化频谱感知过程,提高基于DBN的感知技术的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1537/11309510/3aea37764dcf/pone.0305987.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验