The University of Nottingham, Nottingham NG7 2RD, UK; The John Innes Centre, Norwich NR4 7UH, UK.
The University of Nottingham, Nottingham NG7 2RD, UK.
Cell Rep. 2024 Aug 27;43(8):114576. doi: 10.1016/j.celrep.2024.114576. Epub 2024 Aug 7.
Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
全基因组加倍 (WGD) 发生在所有生物界,影响物种形成、驯化和癌症结局。然而,新生多倍体的双倍 DNA 管理可能具有挑战性。种内多倍体(同源多倍体)的研究允许专注于这个 DNA 管理方面,将其与杂交(异源多倍体杂种)的混杂效应分离。同源多倍体如何被容忍,以及年轻的多倍体如何稳定?在这里,我们引入了一个强大的模型来解决这个问题: Cochlearia 属,它经历了多次多倍化事件。我们评估减数分裂和其他与多倍体相关的表型,生成染色体尺度的基因组,并对来自 33 个倍性对比种群的 113 个个体进行测序。我们在动粒组件和离子转运体上检测到一个明显的与同源多倍体相关的选择信号。通过对选定的等位基因进行建模,我们详细说明了动粒复合物介导对多倍体适应的证据。我们比较了三个相隔 4000 万年的独立同源多倍体中的候选基因,突出了在过程和基因水平上的共同功能,表明了对多倍体的进化灵活性。