Rogger Julian, Judd Emily J, Mills Benjamin J W, Goddéris Yves, Gerya Taras V, Pellissier Loïc
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland.
Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
Science. 2024 Aug 9;385(6709):661-666. doi: 10.1126/science.adn3450. Epub 2024 Aug 8.
Periods of large igneous province (LIP) magmatism have shaped Earth's biological and climatic history, causing major climatic shifts and biological reorganizations. The vegetation response to LIP-induced perturbations may affect the efficiency of the carbon-climate regulation system and the post-LIP climate evolution. Using an eco-evolutionary vegetation model, we demonstrate here that the vegetation's climate adaptation capacity, through biological evolution and geographic dispersal, is a major determinant of the severity and longevity of LIP-induced hyperthermals and can promote the emergence of a new climatic steady state. Proxy-based temperature reconstructions of the Permian-Triassic, Triassic-Jurassic, and Paleocene-Eocene hyperthermals match the modeled trajectories of bioclimatic disturbance and recovery. We conclude that biological vegetation dynamics shape the multimillion-year Earth system response to sudden carbon degassing and global warming episodes.
大火成岩省(LIP)岩浆活动期塑造了地球的生物和气候历史,引发了重大的气候转变和生物重组。植被对LIP引发的扰动的响应可能会影响碳-气候调节系统的效率以及LIP之后的气候演变。通过一个生态进化植被模型,我们在此证明,植被通过生物进化和地理扩散实现的气候适应能力,是LIP引发的高温事件的严重程度和持续时间的主要决定因素,并且能够促进新气候稳态的出现。基于代理的二叠纪-三叠纪、三叠纪-侏罗纪和古新世-始新世高温事件的温度重建结果与生物气候扰动和恢复的模拟轨迹相匹配。我们得出结论,生物植被动态塑造了地球系统对突然的碳脱气和全球变暖事件的数百万年响应。