Suppr超能文献

在打磨任务中使用具有纠正性共享控制机器人的人机协作。

Human-Robot Collaboration With a Corrective Shared Controlled Robot in a Sanding Task.

作者信息

Konstant Anna, Orr Nitzan, Hagenow Michael, Gundrum Isabelle, Hu Yu Hen, Mutlu Bilge, Zinn Michael, Gleicher Michael, Radwin Robert G

机构信息

University of Wisconsin-Madison, USA.

出版信息

Hum Factors. 2025 Mar;67(3):246-263. doi: 10.1177/00187208241272066. Epub 2024 Aug 8.

Abstract

OBJECTIVE

Physical and cognitive workloads and performance were studied for a corrective shared control (CSC) human-robot collaborative (HRC) sanding task.

BACKGROUND

Manual sanding is physically demanding. Collaborative robots (cobots) can potentially reduce physical stress, but fully autonomous implementation has been particularly challenging due to skill, task variability, and robot limitations. CSC is an HRC method where the robot operates semi-autonomously while the human provides real-time corrections.

METHODS

Twenty laboratory participants removed paint using an orbital sander, both manually and with a CSC robot. A fully automated robot was also tested.

RESULTS

The CSC robot improved subjective discomfort compared to manual sanding in the upper arm by 29.5%, lower arm by 32%, hand by 36.5%, front of the shoulder by 24%, and back of the shoulder by 17.5%. Muscle fatigue measured using EMG, was observed in the medial deltoid and flexor carpi radialis for the manual condition. The composite cognitive workload on the NASA-TLX increased by 14.3% for manual sanding due to high physical demand and effort, while mental demand was 14% greater for the CSC robot. Digital imaging showed that the CSC robot outperformed the automated condition by 7.16% for uniformity, 4.96% for quantity, and 6.06% in total.

CONCLUSIONS

In this example, we found that human skills and techniques were integral to sanding and can be successfully incorporated into HRC systems. Humans performed the task using the CSC robot with less fatigue and discomfort.

APPLICATIONS

The results can influence implementation of future HRC systems in manufacturing environments.

摘要

目的

对一种纠正性共享控制(CSC)人机协作(HRC)打磨任务的身体和认知工作量及表现进行研究。

背景

手工打磨对身体要求较高。协作机器人(cobots)有可能减轻身体压力,但由于技能、任务变异性和机器人局限性,完全自主实施一直极具挑战性。CSC是一种HRC方法,机器人半自主运行,同时人类进行实时纠正。

方法

20名实验室参与者分别使用轨道式砂光机手动和借助CSC机器人去除油漆。还测试了一台全自动机器人。

结果

与手工打磨相比,CSC机器人使上臂主观不适感降低了29.5%,下臂降低了32%,手部降低了36.5%,肩部前方降低了24%,肩部后方降低了17.5%。在手动操作条件下,使用肌电图测量发现三角肌内侧和桡侧腕屈肌出现肌肉疲劳。由于体力需求和努力程度高,手工打磨时NASA-TLX上的综合认知工作量增加了14.3%,而CSC机器人的心理需求高14%。数字成像显示,CSC机器人在均匀性方面比自动操作条件高出7.16%,在数量方面高出4.96%,总体高出6.06%。

结论

在这个例子中,我们发现人类技能和技术对于打磨至关重要,并且可以成功融入HRC系统。人类使用CSC机器人执行任务时疲劳和不适感更低。

应用

这些结果可影响未来HRC系统在制造环境中的实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验