Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Finland.
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Sci Total Environ. 2024 Nov 10;950:175173. doi: 10.1016/j.scitotenv.2024.175173. Epub 2024 Aug 6.
Drainage intensity and forest management in peatlands affect carbon dioxide (CO) emissions to the atmosphere and export of dissolved organic carbon (DOC) to water courses. The peatland carbon (C) balance results from a complex network of ecosystem processes from where lateral C fluxes have typically been ignored. Here, we present a new version of the SUSI Peatland simulator, the first advanced process-based ecosystem model that compiles a full C balance in drained forested peatland including DOC formation, transport and biodegradation. SUSI considers site, stand and terrain characteristics as well as the interactions and feedbacks between ecosystem processes and offers novel ways to evaluate and mitigate adverse environmental impacts with thorough management planning. Here, we extended SUSI by designing and parameterizing a mass-balance based decomposition module (ESOM) based on literature findings and tested the ESOM performance against an independent dataset measured in the laboratory using peat columns collected from Finland, Estonia, Sweden and Ireland. ESOM predicted the CO emissions and changes in DOC concentrations with a reasonable accuracy for the peat columns. We applied the new SUSI for drained peatland sites and found that reducing the depth to which ditches are cleaned by 0.3 m decreased the annual DOC export by 34 (17 %), 29 (19 %) and 7 (5 %) kg ha in Finland, Estonia and Sweden, respectively, using typical ditch spacing for these countries. Correspondingly, site annual C sink increased by 305, 409 and 32 kg ha in Finland, Estonia and Sweden, respectively. Our results also indicated that terrain slope can markedly alter the water residence time and consequently DOC biodegradation and export to ditches. We conclude that DOC export can be decreased and site C sink increased by reducing the depth to which ditches are cleaned or by increasing the ditch spacing.
排水强度和森林管理会影响泥炭地向大气排放二氧化碳(CO)以及将溶解有机碳(DOC)输出到水道。泥炭地碳(C)平衡是由一系列生态系统过程组成的复杂网络所产生的,其中侧向 C 通量通常被忽略。在这里,我们提出了 SUSI 泥炭地模拟器的新版本,这是第一个高级基于过程的生态系统模型,它在排水后的森林泥炭地中编制了完整的 C 平衡,包括 DOC 的形成、运输和生物降解。SUSI 考虑了地点、林分和地形特征,以及生态系统过程之间的相互作用和反馈,并提供了评估和减轻不利环境影响的新方法,同时进行了彻底的管理规划。在这里,我们通过设计和参数化基于文献发现的质量平衡分解模块(ESOM)来扩展 SUSI,并使用从芬兰、爱沙尼亚、瑞典和爱尔兰收集的泥炭柱在实验室中使用独立数据集来测试 ESOM 的性能。ESOM 对泥炭柱的 CO 排放和 DOC 浓度变化的预测具有相当的准确性。我们将新的 SUSI 应用于排水泥炭地,并发现将沟渠清理的深度减少 0.3 m,可以分别减少芬兰、爱沙尼亚和瑞典每年的 DOC 排放量 34(17%)、29(19%)和 7(5%)kg·ha。相应地,在芬兰、爱沙尼亚和瑞典,每年的站点 C 汇增加了 305、409 和 32 kg·ha。我们的结果还表明,地形坡度可以显著改变水的停留时间,从而影响 DOC 的生物降解和向沟渠的输出。我们得出结论,通过减少沟渠清理的深度或增加沟渠间距,可以减少 DOC 的输出并增加站点的 C 汇。