Suppr超能文献

机器学习预测重金属在铁(氢)氧化物上的吸附:对吸附效率和结合构型的综合洞察。

Machine learning predicts heavy metal adsorption on iron (oxyhydr)oxides: A combined insight into the adsorption efficiency and binding configuration.

作者信息

Liu Junqin, Zhao Jiang, Du Jiapan, Peng Suyi, Tan Shan, Zhang Wenchao, Yan Xu, Wang Han, Lin Zhang

机构信息

School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China.

School of Mathmatics and Statistics, Beijing Technology and Business University, Beijing 100048, China.

出版信息

Sci Total Environ. 2024 Nov 10;950:175370. doi: 10.1016/j.scitotenv.2024.175370. Epub 2024 Aug 6.

Abstract

The adsorption of heavy metal on iron (oxyhydr)oxides is one of the most vital geochemical/chemical processes controlling the environmental fate of these contaminants in natural and engineered systems. Traditional experimental methods to investigate this process are often time-consuming and labor-intensive due to the complexity of influencing factors. Herein, a comprehensive database containing the adsorption data of 11 heavy metals on 7 iron (oxyhydr)oxides was constructed, and the machine learning models was successfully developed to predict the adsorption efficiency. The random forest (RF) models achieved high prediction performance (R > 0.9, RMSE < 0.1, and MAE < 0.07) and interpretability. Key factors influencing heavy metal adsorption efficiency were identified as mineral surface area, solution pH, metal concentration, and mineral concentration. Additionally, by integrating our previous binding configuration models, we elucidated the simultaneous effects of input features on adsorption efficiency and binding configuration through partial dependence analysis. Higher pH simultaneously enhanced adsorption efficiency and affinity for cations, whereas lower pH benefited that for oxyanions. While higher mineral surface area improved the metal adsorption efficiency, the adsorption affinity could be weakened. This work presents a data-driven approach for investigating metal adsorption behavior and elucidating the influencing mechanisms from macroscopic to microcosmic scale, thereby offering comprehensive guidance for predicting and managing the environmental behavior of heavy metals.

摘要

重金属在铁(氢)氧化物上的吸附是控制这些污染物在自然和工程系统中环境归宿的最重要的地球化学/化学过程之一。由于影响因素的复杂性,传统的研究该过程的实验方法通常既耗时又费力。在此,构建了一个包含11种重金属在7种铁(氢)氧化物上吸附数据的综合数据库,并成功开发了机器学习模型来预测吸附效率。随机森林(RF)模型具有较高的预测性能(R>0.9,RMSE<0.1,MAE<0.07)和可解释性。确定影响重金属吸附效率的关键因素为矿物表面积、溶液pH值、金属浓度和矿物浓度。此外,通过整合我们之前的结合构型模型,我们通过偏依赖分析阐明了输入特征对吸附效率和结合构型的同时影响。较高的pH值同时提高了吸附效率和对阳离子的亲和力,而较低的pH值则有利于对含氧阴离子的吸附。虽然较高的矿物表面积提高了金属吸附效率,但吸附亲和力可能会减弱。这项工作提出了一种数据驱动的方法来研究金属吸附行为,并从宏观到微观尺度阐明影响机制,从而为预测和管理重金属的环境行为提供全面指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验