Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China.
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 300130, Tianjin, People's Republic of China.
ACS Nano. 2024 Aug 20;18(33):22153-22171. doi: 10.1021/acsnano.4c05483. Epub 2024 Aug 8.
cGAS/STING pathway, which is highly related to tumor hypoxia, is considered as a potential target for remodeling the immunosuppressive microenvironment of solid tumors. Metal ions, such as Mn, activate the cGAS/STING pathway, but their efficacy in cancer therapy is limited by insufficient effect on immunogenic tumor cell death of a single ion. Here, we evaluate the association between tumor hypoxia and cGAS/STING inhibition and report a polymetallic-immunotherapy strategy based on large mesoporous trimetal-based nanozyme (AuPdRh) coordinated with Mn (Mn@AuPdRh) to activate cGAS/STING signaling for robust adaptive antitumor immunity. Specifically, the inherent CAT-like activity of this polymetallic Mn@AuPdRh nanozyme decomposes the endogenous HO into O to relieve tumor hypoxia induced suppression of cGAS/STING signaling. Moreover, the Mn@AuPdRh nanozyme displays a potent near-infrared-II photothermal effect and strong POD-mimic activity; and the generated hyperthermia and OH radicals synergistically trigger immunogenic cell death in tumors, releasing abundant dsDNA, while the delivered Mn augments the sensitivity of cGAS to dsDNA and activates the cGAS-STING pathway, thereby triggering downstream immunostimulatory signals to kill primary and distant metastatic tumors. Our study demonstrates the potential of metal-based nanozyme for STING-mediated tumor polymetallic-immunotherapy and may inspire the development of more effective strategies for cancer immunotherapy.
cGAS/STING 通路与肿瘤缺氧高度相关,被认为是重塑实体瘤免疫抑制微环境的潜在靶点。金属离子,如 Mn,可激活 cGAS/STING 通路,但由于单一离子对免疫原性肿瘤细胞死亡的作用有限,其在癌症治疗中的疗效受到限制。在这里,我们评估了肿瘤缺氧与 cGAS/STING 抑制之间的关联,并报告了一种基于多金属免疫治疗策略,该策略基于与 Mn 配位的大介孔三金属基纳米酶(AuPdRh)(Mn@AuPdRh)激活 cGAS/STING 信号,以产生强大的适应性抗肿瘤免疫。具体而言,这种多金属 Mn@AuPdRh 纳米酶的固有 CAT 样活性将内源性 HO 分解为 O,以缓解肿瘤缺氧诱导的 cGAS/STING 信号抑制。此外,Mn@AuPdRh 纳米酶显示出强大的近红外-II 光热效应和强 POD 模拟活性;产生的热疗和 OH 自由基协同触发肿瘤中的免疫原性细胞死亡,释放大量 dsDNA,而递送的 Mn 增强了 cGAS 对 dsDNA 的敏感性并激活了 cGAS-STING 通路,从而引发下游免疫刺激信号以杀死原发性和远处转移性肿瘤。我们的研究证明了基于金属的纳米酶在 STING 介导的肿瘤多金属免疫治疗中的潜力,并可能激发更有效的癌症免疫治疗策略的发展。