Hsieh K M, Lion L W, Shuler M L
Appl Environ Microbiol. 1985 Nov;50(5):1155-61. doi: 10.1128/aem.50.5.1155-1161.1985.
A novel bioreactor system constructed for studies of the interactions of heavy metals and microbial cells at the solid-solution interface is described. The applicability of this experimental system to meet the severe constraints imposed on such an apparatus by the requirements for an unambiguous interpretation of data and for mathematical modeling of these interactions was explored with the trace metal lead and with the marine bacterium Pseudomonas atlantica. A chemically defined medium composed of the major components of seawater, simple salts required for growth, glucose, and the single amino acid glycine was derived. It supported a maximum growth rate several times less than that in a complex medium, but provided growth to high cell densities and the formation of biopolymer and supported the development of a monolayer biofilm. The use of such a medium in conjunction with our bioreactor system minimized trace metal contamination while allowing quantification of the partitioning of lead onto various reactor surfaces. Lead adsorption by reactor walls and model surfaces was linear with equilibrium led concentration up to 6 X 10(-6) mol/liter. Equilibrium lead adsorption due to P. atlantica biofilm surfaces ranged from 20 to 40% at a total lead concentration of 10(-6) mol/liter depending upon solution pH and ionic composition, indicating that biofilms can play an important role in controlling toxic metal concentrations in natural systems.
本文描述了一种新型生物反应器系统,该系统用于研究重金属与微生物细胞在固 - 液界面的相互作用。利用痕量金属铅和海洋细菌大西洋假单胞菌,探讨了该实验系统在满足对数据进行明确解释以及对这些相互作用进行数学建模的要求所施加于此类仪器的严格限制方面的适用性。推导出一种化学限定培养基,其由海水的主要成分、生长所需的简单盐类、葡萄糖和单一氨基酸甘氨酸组成。它支持的最大生长速率比复杂培养基中的生长速率低几倍,但能使细胞密度达到很高水平并形成生物聚合物,还支持单分子层生物膜的形成。将这种培养基与我们的生物反应器系统结合使用,可将痕量金属污染降至最低,同时能够对铅在各种反应器表面的分配进行定量分析。反应器壁和模型表面对铅的吸附与平衡铅浓度呈线性关系,直至6×10⁻⁶摩尔/升。在总铅浓度为10⁻⁶摩尔/升时,由于大西洋假单胞菌生物膜表面导致的平衡铅吸附量在20%至40%之间,这取决于溶液的pH值和离子组成,表明生物膜在控制自然系统中有毒金属浓度方面可发挥重要作用。