Suppr超能文献

离子缔合对锂氧电池氧化还原介质电化学的影响:构建理论框架

The effect of ionic association on the electrochemistry of redox mediators for Li-O batteries: developing a theoretical framework.

作者信息

Horwitz Gabriela, Kunz Vera, Niblett Samuel P, Grey Clare P

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.

The Faraday Institution, Quad One, Harwell Campus, Becquerel Ave, Didcot OX11 0RA, UK.

出版信息

Phys Chem Chem Phys. 2024 Aug 22;26(33):22134-22148. doi: 10.1039/d4cp01488j.

Abstract

A theoretical framework to explain how interactions between redox mediators (RMs) and electrolyte components impact electron transfer kinetics, thermodynamics, and catalytic efficiency is presented. Specifically focusing on ionic association, 2,5-di--butyl-1,4-benzoquinone (DBBQ) is used as a case study to demonstrate these effects. Our analytical equations reveal how the observed redox couple's potential and electron transfer rate constants evolve with Li concentration, resulting from different redox activity mechanisms. Experimental validation by cyclic voltammetry measurements shows that DBBQ binds to three Li ions in its reduced state and one Li ion in its neutral form, leading to a maximum in the electron transfer kinetic constant at around 0.25 M. The framework is extended to account for other phenomena that can play an important role in the redox reaction mechanisms of RMs. The effect of Li ion solvation and its association with the supporting salt counteranion on the redox processes is considered, and the role of "free Li" concentration in determining the electrochemical behaviour is emphasized. The impact of Li concentration on oxygen reduction reaction (ORR) catalysis was then explored, again using DBBQ and modelling the effects of the Li concentration on electron transfer and catalytic kinetics. We show that even though the observed catalytic rate constant increases with Li concentration, the overall catalysis can become more sluggish depending on the electron transfer pathway. Cyclic voltammograms are presented as illustrative examples. The strength of the proposed theoretical framework lies in its adaptability to a wider range of redox mediators and their interactions with the various electrolyte components and redox active molecules such as oxygen. By understanding these effects, we open up new avenues to tune electron transfer and catalytic kinetics and thus improve the energy efficiency and rate capability of Li-O batteries. Although exact results may not transfer to different solvents, the predictions of our model will provide a starting point for future studies of similar systems, and the model itself is easily extensible to new chemistries.

摘要

本文提出了一个理论框架,用于解释氧化还原介质(RM)与电解质成分之间的相互作用如何影响电子转移动力学、热力学和催化效率。具体聚焦于离子缔合,以2,5-二叔丁基-1,4-苯醌(DBBQ)为例进行研究,以证明这些效应。我们的分析方程揭示了由于不同的氧化还原活性机制,观察到的氧化还原对的电位和电子转移速率常数如何随锂浓度变化。通过循环伏安法测量进行的实验验证表明,DBBQ在其还原态下与三个锂离子结合,在其中性形式下与一个锂离子结合,导致电子转移动力学常数在约0.25 M时达到最大值。该框架被扩展以解释其他可能在RM的氧化还原反应机制中起重要作用的现象。考虑了锂离子溶剂化及其与支持盐抗衡阴离子的缔合对氧化还原过程的影响,并强调了“游离锂”浓度在决定电化学行为中的作用。然后再次使用DBBQ并模拟锂浓度对电子转移和催化动力学的影响,探讨了锂浓度对氧还原反应(ORR)催化的影响。我们表明,尽管观察到的催化速率常数随锂浓度增加,但根据电子转移途径的不同,整体催化作用可能会变得更加迟缓。给出了循环伏安图作为示例。所提出的理论框架的优势在于其对更广泛的氧化还原介质及其与各种电解质成分和氧化还原活性分子(如氧气)的相互作用的适应性。通过理解这些效应,我们开辟了新的途径来调节电子转移和催化动力学,从而提高锂氧电池的能量效率和倍率性能。尽管确切结果可能不适用于不同的溶剂,但我们模型的预测将为未来类似系统的研究提供一个起点,并且该模型本身易于扩展到新的化学体系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/066f/11310830/0d23a2f27150/d4cp01488j-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验