Suppr超能文献

采用全基因组关联研究、耐药重建和机器学习的综合方法对 使用中的甲氧苄啶耐药进行整体理解。

Holistic understanding of trimethoprim resistance in using an integrative approach of genome-wide association study, resistance reconstruction, and machine learning.

机构信息

Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

出版信息

mBio. 2024 Sep 11;15(9):e0136024. doi: 10.1128/mbio.01360-24. Epub 2024 Aug 9.

Abstract

UNLABELLED

Antimicrobial resistance (AMR) is a public health threat worldwide. Next-generation sequencing (NGS) has opened unprecedented opportunities to accelerate AMR mechanism discovery and diagnostics. Here, we present an integrative approach to investigate trimethoprim (TMP) resistance in the key pathogen . We explored a collection of 662 . genomes by conducting a genome-wide association study (GWAS), followed by functional validation using resistance reconstruction experiments, combined with machine learning (ML) approaches to predict TMP minimum inhibitory concentration (MIC). Our study showed that multiple additive mutations in the and loci are responsible for TMP non-susceptibility in and can be used as key features to build ML models for digital MIC prediction, reaching an average accuracy within ±1 twofold dilution factor of 86.3%. Our roadmap of analysis-wet-lab validation-diagnostic tool building could be adapted to explore AMR in other combinations of bacteria-antibiotic.

IMPORTANCE

In the age of next-generation sequencing (NGS), while data-driven methods such as genome-wide association study (GWAS) and machine learning (ML) excel at finding patterns, functional validation can be challenging due to the high numbers of candidate variants. We designed an integrative approach combining a GWAS on clinical isolates, followed by whole-genome transformation coupled with NGS to functionally characterize a large set of GWAS candidates. Our study validated several phenotypic mutations beyond the standard Ile100Leu mutation, and showed that the overexpression of the locus produces trimethoprim (TMP) resistance in . These validated loci, when used to build ML models, were found to be the best inputs for predicting TMP minimal inhibitory concentrations. Integrative approaches can bridge the genotype-phenotype gap by biological insights that can be incorporated in ML models for accurate prediction of drug susceptibility.

摘要

未加标签

抗生素耐药性(AMR)是全球公共卫生的威胁。下一代测序(NGS)为加速 AMR 机制的发现和诊断提供了前所未有的机会。在这里,我们提出了一种综合方法来研究关键病原体 中的甲氧苄啶(TMP)耐药性。我们通过进行全基因组关联研究(GWAS),探索了 662 个 基因组的集合,然后使用耐药性重建实验进行功能验证,结合机器学习(ML)方法预测 TMP 最小抑菌浓度(MIC)。我们的研究表明, 和 基因座中的多个附加突变导致 中的 TMP 不敏感性,并且可以用作构建 ML 模型以进行数字 MIC 预测的关键特征,平均准确率在±1 倍稀释因子内为 86.3%。我们的 分析-湿实验室验证-诊断工具构建路线图可以适应于探索其他细菌-抗生素组合中的 AMR。

重要性

在下一代测序(NGS)时代,尽管基于数据的方法(如全基因组关联研究(GWAS)和机器学习(ML))擅长于发现模式,但由于候选变体数量众多,功能验证可能具有挑战性。我们设计了一种综合方法,该方法结合了对临床分离株的 GWAS,然后进行全基因组转化并结合 NGS,以对大量 GWAS 候选基因进行功能表征。我们的研究验证了除标准 Ile100Leu 突变之外的几种表型 突变,并表明 基因座的过表达可在 中产生甲氧苄啶(TMP)耐药性。这些经过验证的基因座在构建 ML 模型时,被发现是预测 TMP 最小抑菌浓度的最佳输入。通过可以纳入 ML 模型以进行药物敏感性的准确预测的生物学见解,综合方法可以弥合基因型-表型差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f42/11389379/ecf686e2558f/mbio.01360-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验