Carmona-Almazán Juan P, Castro-Ceseña Ana B, Aguila Sergio A
Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico.
Nanoscale. 2024 Aug 22;16(33):15801-15814. doi: 10.1039/d4nr01358a.
In disease treatment, maintaining therapeutic drug concentrations often requires multiple doses. Lipid/polymer hybrid nanoparticles (LPHNPs) offer a promising solution by facilitating sustained drug delivery within therapeutic ranges. Here, we synthesized poly(lactic--glycolic acid) (PLGA) nanoparticles coated with soy lecithin using nanoprecipitation and self-assembly techniques. These nanoparticles were incorporated into gelatin aerogels to ensure uniform distribution and increase the concentration. Our study focused on understanding the release kinetics of hydrophilic (gallic acid) and lipophilic (quercetin) compounds from this system. Nanoparticles exhibited hydrodynamic diameters of 100 ± 15 nm (empty), 153 ± 33 nm (gallic acid-loaded), and 149 ± 21 nm (quercetin-loaded), with encapsulation efficiencies of 90 ± 5% and 70 ± 10% respectively. Gallic acid release followed the Korsmeyer-Peppas kinetics model ( = 1.01), while quercetin showed first-order kinetics. Notably, encapsulated compounds demonstrated delayed release compared to free compounds in gelatin aerogels, illustrating LPHNPs' ability to modulate release profiles independent of the compound type. This study underscores the potential of LPHNPs in optimizing drug delivery strategies for enhanced therapeutic outcomes.
在疾病治疗中,维持治疗药物浓度通常需要多次给药。脂质/聚合物杂化纳米颗粒(LPHNPs)通过在治疗范围内促进药物的持续递送提供了一种有前景的解决方案。在此,我们使用纳米沉淀和自组装技术合成了包覆大豆卵磷脂的聚乳酸-乙醇酸共聚物(PLGA)纳米颗粒。这些纳米颗粒被整合到明胶气凝胶中以确保均匀分布并提高浓度。我们的研究重点是了解亲水性(没食子酸)和亲脂性(槲皮素)化合物从该系统中的释放动力学。纳米颗粒的流体动力学直径分别为100±15nm(空的)、153±33nm(负载没食子酸的)和149±21nm(负载槲皮素的),包封率分别为90±5%和70±10%。没食子酸的释放遵循Korsmeyer-Peppas动力学模型(n = 1.01),而槲皮素表现出一级动力学。值得注意的是,与明胶气凝胶中的游离化合物相比,包封的化合物表现出延迟释放,这说明了LPHNPs调节释放曲线的能力,且与化合物类型无关。本研究强调了LPHNPs在优化药物递送策略以提高治疗效果方面的潜力。